. 24/7 Space News .
STELLAR CHEMISTRY
X-ray scattering enables closer scrutiny of the interior of planets and stars
by Staff Writers
Dresden, Germany (SPX) Jun 25, 2020

By using a new measuring method -- the so-called X-ray Thomson scattering -- an international team of researchers was able to prove that the high pressure inside planets like Neptune or Uranus dissolves hydrocarbon into its individual parts and converts the released carbon atoms into diamond structures. Thanks to the new measuring method, such conditions, which experts call warm, dense matter and which do not occur naturally on Earth, can be examined more closely.

Recreating extreme conditions in the lab, like those in the interior of planets and stars, is very complex and can only be achieved for fractions of a second. An international research team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now presented a new, very precise method of evaluating the behavior of mixtures of different elements under high pressure with the help of X-ray scattering.

The results hone previous measurements and reinforce the premise that the matter in planets like Neptune and Uranus can alter dramatically: the hot hydrocarbon mixture in the interior of the ice giants can produce a kind of diamond rain, as the researchers report in Nature Communications (DOI: 10.1038/s41467-020-16426-y).

Neither solid, nor fluid, neither gaseous, nor a plasma: the matter inside planets and stars can take on a particular intermediate state, at a temperature of thousands of degrees, and compressed a thousand times more than our Earth's atmosphere - experts call it warm dense matter.

There is a lot we still don't know about it. Lab experiments are set to change all that but are technically highly complex because this exotic state does not occur naturally on Earth. Which all means that both the crafting and study of artificial warm dense matter is a challenge for investigators and theoreticians alike.

"But in the last resort, we have to understand the processes in warm dense matter if we want to model planets," explains Dr. Dominik Kraus, lead author of the study and the mastermind behind the measuring method. "We now have a very promising new approach based on X-ray scattering. Our experiments are delivering important model parameters where, before, we only had massive uncertainty. This will become ever more relevant the more exoplanets we discover."

Diamond showers - a planetary energy source
At SLAC National Accelerator Laboratory at Stanford University, the researchers studied the structure of the matter in mixtures that are typical for planets, in the case of ice giants, hydrocarbon, employing intense laser light. Standard plastic film served as a substitute for planetary hydrocarbon. An optical high-energy laser converts the plastic into warm dense matter: short, strong laser pulses generate shock waves in the film and compress the plastic to the extreme.

"We produce about 1.5 million bars, that is equivalent to the pressure exerted by the weight of some 250 African elephants on the surface of a thumbnail," says Kraus, illustrating the dimensions. What happens is that the laser shock waves also heat up the matter to approximately 5,000 degrees. To evaluate the effect, researchers shoot an extremely powerful X-ray laser at the sample. Depending on how the light is scattered as it passes through the sample, they can draw inferences about the structure of the matter.

The researchers observed that in a state of warm dense matter, what was formerly plastic produces diamonds. The high pressure can split the hydrocarbon into carbon and hydrogen. The carbon atoms that are released compact into diamond structures.

In the case of planets like Neptune and Uranus this means that the formation of diamonds in their interior can trigger an additional energy source. The diamonds are heavier than the matter surrounding them and slowly sink to the core of the planet in a kind of diamond rain. In the process, they rub against their surroundings and generate heat - an important factor for planet models.

X-ray scattering enhances measuring precision
In an earlier experiment, Kraus and his team were the first to prove the possible formation of diamonds in planets using X-ray diffraction in an experimental setting (DOI: 10.1038/s41550-017-0219-9). But the diffraction patterns of X-ray light can only reveal crystalline structures.

Using additional detectors, the researchers now also analyzed how the light was scattered by the electrons in the matter. They compared the various scattering components with one another as well as with theoretical simulations. This process enables precise scrutiny of the entire structure of matter.

"In the case of the ice giants we now know that the carbon almost exclusively forms diamonds when it separates and does not take on a fluid transitional form," explains Kraus.

The method is not only more sensitive than X-ray diffraction, it can also be used more extensively because it makes fewer technical demands on the light source for the analysis. The international research team is now planning to apply it to hydrogen mixtures similar to those that occur in gaseous planets and to compressed pure hydrogen as found in the interior of small stars.

These experiments, which are planned to be conducted, among others, at the Helmholtz International Beamline for Extreme Fields (HIBEF) at the European XFEL, could help researchers to understand the many planets we already know about outside our solar system to ascertain whether life might even be possible on any of them.

Fusion experiments could benefit practically from the new measuring method, as well. Fusion research also tries to recreate on Earth processes that occur under great pressure in stars. During inertial confinement fusion, deuterium and tritium fuels are heated to extremes and compressed - warm dense matter is an intermediate state. With the help of X-ray scattering, this process could be monitored precisely.

Research Report: "Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter"


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
X-rays From a Newborn Star Hint at Our Sun's Earliest Days
Boston MA (SPX) Jun 19, 2020
By detecting an X-ray flare from a very young star using NASA's Chandra X-ray Observatory, researchers have reset the timeline for when stars like the Sun start blasting high-energy radiation into space, as reported in our latest press release. This is significant because it may help answer some questions about our Sun's earliest days as well as some about the Solar System today. This artist's illustration depicts the object where astronomers discovered the X-ray flare. HOPS 383 is called a young ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Developing a Plan to Fly Personnel on Suborbital Spacecraft

NASA Reveals What Could Be Source of 'Elevated Benzene Level' on ISS

Space Station stitch

Future space travelers may follow cosmic lighthouses

STELLAR CHEMISTRY
China launches final satellite to complete rival to GPS

Australian professor wants local town to become hub for commercial space travel

Virgin Galactic signs agreement with NASA

Northrop Grumman rocket boosters arrive at KSC for Artemis I mission

STELLAR CHEMISTRY
How NASA's Mars Helicopter Will Reach the Red Planet's Surface

NASA's new Mars mission will take at least a decade to confirm life

The Launch Is Approaching for NASA's Next Mars Rover, Perseverance

Martian rover motors ahead

STELLAR CHEMISTRY
Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

More details of China's space station unveiled

STELLAR CHEMISTRY
NASA moving forward to enable a low-earth orbit economy

SES selects 2 US companies to build 4 satellites as part of Accelerated C-Band Clearing Plan

NanoAvionics to build first 2 satellite buses for Omnispace Constellation

WA space project to drive industry growth

STELLAR CHEMISTRY
Reducing the risk of space debris collision

Quantum rings in the hold of laser light

ESA awards NanoAvionics contract to develop new satellite propulsion technologies

Fish armor both tough and flexible

STELLAR CHEMISTRY
Young giant planet offers clues to formation of exotic worlds

Breakthrough listen releases list of "exotica"

New study to search universe for signs of technological civilizations

NASA scientist simulates sunsets on other worlds

STELLAR CHEMISTRY
Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.