. 24/7 Space News .
STELLAR CHEMISTRY
Whispers from the dark side: What can gravitational waves reveal about dark matter?
by Staff Writers
Mainz, Germany (SPX) Mar 16, 2021

Representative illustration of the Earth embedded in space-time which is deformed by the background gravitational waves and its effects on radio signals coming from observed pulsars

The NANOGrav Collaboration recently captured the first signs of very low-frequency gravitational waves. Prof. Pedro Schwaller and Wolfram Ratzinger analyzed the data and, in particular, considered the possibility of whether this may point towards new physics beyond the Standard Model. In an article published in the journal SciPost Physics, they report that the signal is consistent with both a phase transition in the early universe and the presence of a field of extremely light axion-like particles (ALPs). The latter are considered as promising candidates for dark matter.

Gravitational waves open a window into the early universe. While the ubiquitous cosmic microwave background yields no clues about the first 300,000 years of our universe, they provide some glimpses of what happened during Big Bang. "It's exactly this very early universe that is so exciting for particle physicists," explains Pedro Schwaller, Professor of Theoretical Physics at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).

"This is the time when the elementary particles like quarks and gluons are present, and then combine to form the building blocks of atomic nuclei."

The special thing about the gravitational waves which the NANOGrav Collaboration has detected for the first time is that they have a very low frequency of 10-8 Hertz, which equates to approximately one oscillation per year. Due to their correspondingly large wavelength, in order to detect them any detector would also have to be equally large. As such a detector is not possible here on Earth, the astronomers at NANOGrav use distant pulsars and their light signals as huge detectors.

Wolfram Ratzinger outlines the motivation behind their work: "Even though so far the data only provides us with a first hint of the existence of low-frequency gravitational waves, it is still very exciting for us to work with them. This is because such waves could be produced by various processes that occurred in the early universe. We can now use the data we already have to decide, which of these come into consideration and which do not fit the data at all."

As a result, the Mainz-based scientists decided to take a particularly close look at two scenarios that could have caused the observed gravitational waves: Phase transitions in the early universe and a dark matter field of extremely light axion-like particles (ALPs). Phase transitions such as these occur due to the falling temperature in the primordial soup after the Big Bang and result in massive turbulences - however, like dark matter they are not covered by the Standard Model.

Based on the data available, Pedro Schwaller and Wolfram Ratzinger interpret the results of their analysis with relative caution: "Perhaps slightly more probable is the early phase transition scenario." On the other hand, the two physicists believe that the fact that they are able to work out certain possibilities based only on limited data proves the potential of their approach. "Our work is a first, but important development - it gives us a lot of confidence that with more precise data we can draw reliable conclusions about the message gravitational waves are sending us from the early universe."

"Furthermore," Pedro Schwaller concludes, "we can already begin to pin down certain characteristics of the scenarios and put constraints on them, in our case the strength of the phase transition and the mass of the axions."

Research paper


Related Links
Johannes Gutenberg Universitaet Mainz
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Factoring in gravitomagnetism could do away with dark matter
Washington DC (SPX) Mar 05, 2021
Observations of galactic rotation curves give one of the strongest lines of evidence pointing towards the existence of dark matter, a non-baryonic form of matter that makes up an estimated 85% of the matter in the observable Universe. Current assessments of galactic rotation curves are based upon a framework of Newtonian accounts of gravity, a new paper published in EPJ C, by Gerson Otto Ludwig, National Institute for Space Research, Brazil, suggests that if this is substituted with a general rela ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Reports: Biden to tap Bill Nelson as NASA administrator

With SpaceX, ISS enters 'Golden Age' But what comes next

Keeping up with Thomas

ISS crew once again uses tea leaves to locate air leak in Russian module Zvezda

STELLAR CHEMISTRY
FAA approves renewal of Orbital Sciences launch operator licenses

NASA, SpaceX Sign Joint Spaceflight Safety Agreement

Successful test for NASA's giant Moon rocket

Peraton awarded US Army hypersonic testing and evaluation contract

STELLAR CHEMISTRY
Perseverance captures the sounds of driving on Mars

Is there life on mars today and where

For some scientists, Mars 2020 is a mission of perseverance

New study challenges long-held theory of fate of Martian Water

STELLAR CHEMISTRY
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

STELLAR CHEMISTRY
NASA to Host Virtual Symposium Exploring Rise of Commercial Space

Umbra hits regulatory "jackpot" for its satellite constellation able to see a soda can from space

City under pressure to invest into UK space industry

Pioneering UK space technology gets government cash boost

STELLAR CHEMISTRY
Airbus pioneers first satellite factory in space

ThinKom antenna design offers flexible installation options for special-purpose aircraft

Spacepath Communications to provide solid-state amplifiers for US Market

NAV CANADA awards Raytheon UK contract for secondary surveillance radars to manage Canadian airspace

STELLAR CHEMISTRY
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

How the habitability of exoplanets is influenced by their rocks

There might be many planets with water-rich atmospheres

STELLAR CHEMISTRY
SwRI scientists help identify the first stratospheric winds measured on Jupiter

Juno reveals dark origins of one of Jupiter's grand light shows

Jupiter's Great Red Spot feeds on smaller storms

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.