Subscribe free to our newsletters via your
. 24/7 Space News .




JOVIAN DREAMS
What Lies Inside Jupiter
by Dr. Tony Phillips for NASA Science News
Huntsville AL (SPX) Aug 01, 2011


Induced electric fields accelerate particles toward Jupiter's poles where the aurora action takes place. Remarkably, many of the particles that rain down on Jupiter's poles appear to be ejecta from volcanoes on Io. How this complicated system actually works is a puzzle.

Jupiter's swirling clouds can be seen through any department store telescope. With no more effort than it takes to bend over an eyepiece, you can witness storm systems bigger than Earth navigating ruddy belts that stretch hundreds of thousands of kilometers around Jupiter's vast equator. It's fascinating. It's also vexing. According to many researchers, the really interesting things--from the roots of monster storms to stores of exotic matter--are located at depth. The clouds themselves hide the greatest mysteries from view.

NASA's Juno probe, scheduled to launch on August 5th, could change all that. The goal of the mission is to answer the question, What lies inside Jupiter?

"Our knowledge of Jupiter is truly skin deep," says Juno's principal investigator, Scott Bolton of the SouthWest Research Institute in San Antonio, TX. "Even the Galileo probe, which dived into the clouds in 1995, penetrated no more than about 0.2% of Jupiter's radius."

There are many basic things researchers would like to know-like how far down does the Great Red Spot go? How much water does Jupiter hold? And what is the exotic material near the planet's core?

Juno will lift the veil without actually diving through the clouds. Bolton explains how: "Swooping as low as 5000 km above the cloudtops, Juno will spend a full year orbiting nearer to Jupiter than any previous spacecraft. The probe's flight path will cover all latitudes and longitudes, allowing us to fully map Jupiter's gravitational field and thus figure out how the interior is layered."

Jupiter is made primarily of hydrogen, but only the outer layers may be in gaseous form. Deep inside Jupiter, researchers believe, high temperatures and crushing pressures transform the gas into an exotic form of matter known as liquid metallic hydrogen--a liquid form of hydrogen akin to the slippery mercury in an old-fashioned thermometer. Jupiter's powerful magnetic field almost certainly springs from dynamo action inside this vast realm of electrically conducting fluid.

"Juno's magnetometers will precisely map Jupiter's magnetic field," says Bolton. "This will tell us a great deal about the planet's inner magnetic dynamo [and the role liquid metallic hydrogen plays in it]."

Juno will also probe Jupiter's atmosphere using a set of microwave radiometers.

"Our sensors can measure the temperature and water content at depths where the pressure is 50 times greater than what the Galileo probe experienced," says Bolton.

Jupiter's water content is of particular interest. There are two leading theories of Jupiter's origin: One holds that Jupiter formed more or less where it is today, while the other suggests Jupiter formed at greater distances from the sun, later migrating to its current location. (Imagine the havoc a giant planet migrating through the solar system could cause.) The two theories predict different amounts of water in Jupiter's interior, so Juno should be able to distinguish between them-or rule out both.

Finally, Juno will get a grand view of the most powerful Northern Lights in the Solar System.

"Juno's polar orbit is ideal for studying Jupiter's auroras," explains Bolton. "They are really strong, and we don't fully understand how they are created."

Unlike Earth, which lights up in response to solar activity, Jupiter makes its own auroras. The power source is the giant planet's own rotation. Although Jupiter is ten times wider than Earth, it manages to spin around 2.5 times as fast as our little planet. As any freshman engineering student knows, if you spin a magnet-and Jupiter is a very big magnet-you've got an electric generator.

Induced electric fields accelerate particles toward Jupiter's poles where the aurora action takes place. Remarkably, many of the particles that rain down on Jupiter's poles appear to be ejecta from volcanoes on Io. How this complicated system actually works is a puzzle.

It's a puzzle that members of the public will witness at close range thanks to JunoCam-a public outreach instrument modeled on the descent camera for Mars rover Curiosity. When Juno swoops low over the cloudtops, JunoCam will go to work, snapping pictures better than the best Hubble images of Jupiter.

"JunoCam will show us what you would see if you were an astronaut orbiting Jupiter," says Bolton. "I am looking forward to that."

Juno is slated to reach Jupiter in 2016.

.


Related Links
Juno at NASA
Jupiter and its Moons
Explore The Ring World of Saturn and her moons
The million outer planets of a star called Sol
News Flash at Mercury






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








JOVIAN DREAMS
Jupiter-Bound Juno Spacecraft Mated to its Rocket
Kennedy Space Center FL (SPX) Jul 28, 2011
NASA's Juno spacecraft completed its last significant terrestrial journey, July 27, with a 15-mile (25-kilometer) trip from Astrotech Space Operations in Titusville, Fla., to its launch pad at the Cape Canaveral Air Force Station. The solar-powered, Jupiter-bound spacecraft was secured into place on top of its rocket at 10:42 a.m. EDT (7:42 a.m. PDT). Juno will arrive at Jupiter in July 20 ... read more


JOVIAN DREAMS
Unique volcanic complex discovered on Lunar far side

Moon Express Announces Dr. Alan Stern as Chief Scientist

Northrop Grumman Honored by IEEE for Development of Lunar Module

Two NASA Probes Tackle New Mission: Studying The Moon

JOVIAN DREAMS
NASA's Next Mars Rover to Land at Gale Crater

Opportunity Closing In On Spirit Point At Endeavour Crater

MAVEN Mission Completes Major Milestone

NASA says Mars mountain will read like 'a great novel'

JOVIAN DREAMS
Virgin Galactic Appoints Its First Chief Financial Officer

SwRI suborbital astronaut payload specialists move to flight planning phase, release mission patch

Graybiel Lab poised for next chapter of space exploration

Space Program Mavens Comment on the Future of Space Exploration

JOVIAN DREAMS
Why Tiangong is not a Station Hub

China to launch experimental satellite in coming days

Spotlight Time for Tiangong

China launches new data relay satellite

JOVIAN DREAMS
Voyage to Vaccine Discovery Continues with Space Station Salmonella Study

New uses for Space Station

ISS to be sunk after 2020: Russian space agency

Certification for ISS onboard astronaut

JOVIAN DREAMS
United Launch Alliance Saves Money with First Combined Atlas and Delta Shipments on Mariner

Russia sends observation satellite into space

NASA inks agreement with maker of Atlas V rocket

Russia launches 2 foreign satellites into orbit

JOVIAN DREAMS
Exoplanet Aurora Makes For An Out-of-this-World Sight

Distant planet aurorae modeled

Exoplanet Aurora: An Out-of-this-World Sight

Ten new distant planets detected

JOVIAN DREAMS
Discovery of a new magnetic order

New Webb Telescope Technologies Already Helping Human Eyes

Material created at Purdue lets electrons 'dance' and form new state

Vietnam Selecting Belgium For Second EO Satellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement