![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Lemont IL (SPX) Jan 12, 2023
A new paper shows that vegetation type is an important predictor of energy exchange between land and the atmosphere in the Arctic summer. Since 1979, the Arctic has warmed nearly four times faster than the Earth as a whole due to climate change. Rising temperatures have reduced the extent of sea ice and permafrost, decreased snow cover, and altered plant communities in the Arctic. These changes can impact how energy moves between the land and the atmosphere in the region, which subsequently affects weather and temperature patterns around the world. A recent study from researchers across 63 institutions, including the U.S. Department of Energy's (DOE) Argonne National Laboratory and the DOE Office of Science Atmospheric Radiation Measurement (ARM) user facility, evaluated the impacts of various drivers on energy exchange, or the process by which energy moves between land and the atmosphere in the Arctic. They found that vegetation type, which is often simplified in climate models, is a primary predictor of how energy is exchanged during the Arctic summer. "I expected there to be differences in vegetation type, but not to this extent," said Ryan Sullivan, assistant atmospheric scientist at Argonne and co-author of the study. "Vegetation type had stronger predictive skill on the surface energy budget than permafrost, temperature, snow cover and cloud cover." The surface energy budget describes how much energy from the sun reaches the Earth's surface and how much energy is absorbed or reflected back to the atmosphere. The budget includes four main components: net radiation, sensible heat flux, latent heat flux and ground heat flux. Net radiation captures the amount of energy going into Earth's system. Sensible heat flux describes energy that is transferred as heat, causing a change in temperature. Latent heat flux refers to a change in energy that doesn't result in a change in temperature. Finally, ground heat flux defines energy that is stored in the ground. In this study, the researchers evaluated the effects of 15 drivers on the four main components of the surface energy budget in the Arctic from June to August. They analyzed data collected between 1994 and 2021 across 64 measuring stations. Because snow and ice reflect heat from the sun back into the atmosphere, the researchers expected to that snow amount, snow duration and permafrost extent would be strong indicators of the four components of the surface energy budget. However, they found that the type of vegetation community was a better predictor of sensible heat flux and latent heat flux than any of the other drivers tested. "Remarkably, in summer the difference in heat flux between two types of vegetation - such as a landscape dominated by lichens and mosses and one with shrubs - is about the same as between the surface of glaciers and green grasslands," said Jacqueline Oehri, first author of the study. The scientists suggested that vegetation type has a strong impact on the energy budget for two primary reasons. First, the Arctic exhibits extensive diversity in plant communities, ranging from boreal peat bogs to lichen-covered barrens to grasslands. Each vegetation community reflects a variety of other environmental conditions, such as temperature, topography, soil moisture and permafrost conditions. Second, plants differ in height, productivity and albedo traits, all of which can impact how energy moves between the land and the atmosphere. The study also showed that effects of vegetation type on the energy budget varied depending on when snow cover disappeared in the spring and returned in the fall, demonstrating the importance of seasonality in energy fluxes. "We hope that people improve treatment of vegetation type in Earth system models and use this to also better understand how these effects might change in the future," said Sullivan. For example, warming global temperatures may change the distribution of certain plant species in the Arctic, which could further impact how energy exchange occurs. "Another novel outcome of this study was the synthesis of all the international measurements," said Sullivan. "It was a great opportunity to bring different groups together and work across disciplines."
Research Report:Vegetation type is an important predictor of the arctic summer land surface energy budget
![]() ![]() Canadian polar bears disappearing fast: study Ottawa (AFP) Dec 23, 2022 Polar bears are disappearing fast from the Western part of Hudson Bay, on the southern tip of the Canadian Arctic, according to a new government survey. The number of female bears and cubs in particular has seen a dramatic decline. Researchers have flown over the region - which includes the town of Churchill, a tourist destination touted as the "polar bear capital of the world" - every five years to count the number of bears and extrapolate population trends. During the last survey in late ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |