. 24/7 Space News .
STELLAR CHEMISTRY
Using Webb Telescope to study supernovae as source of heavy elements in universe
by Suzanne Irby for VT News
Blacksburg VA (SPX) Oct 24, 2022

File illustration of the Webb Telescope fully deployed.

In 1980's popular book "Cosmos," Carl Sagan wrote of what makes us: "All the elements of the Earth except hydrogen and some helium have been cooked by a kind of stellar alchemy billions of years ago in stars, some of which are today inconspicuous white dwarfs on the other side of the Milky Way Galaxy. The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of 'starstuff.'" Chris Ashall, an assistant professor of astrophysics in the Virginia Tech College of Science's Department of Physics, wants to know more about where and how this "starstuff" is made.

This week, Ashall began using NASA's James Webb Space Telescope to collect data on the presence of heavy elements in exploding dying stars, or supernovae. As James Webb's Baltimore-based mission operations center relays commands to the distant telescope to gather observations on supernovae targeted by Ashall, his team at Virginia Tech will study the collected data alongside more than 30 other scientists from around the world as part of the Mid-Infrared Supernova Collaboration that Ashall leads.

Ashall is one of the few scientists selected to use the telescope for two projects during the mission's first cycle. The projects will study two types of supernovae: type Ia supernovae, which describe exploding carbon-oxygen white dwarf stars, and core-collapse supernovae.

"Pretty much everything around us comes from dying stars," Ashall said. "We're made of stardust. Being able to study that fact - what we're made out of - in detail, and to understand where the elements around us come from, is truly amazing."

Stars produce heavy elements through the process of stellar nucleosynthesis. As stars burn, die, and explode, thermonuclear reactions take place inside them.

Supernovae are one of the highest-temperature and highest-density places in the universe, Ashall said. The material in stars burns and burns to form heavier and heavier elements, from hydrogen to helium, helium to carbon, carbon to oxygen, and so forth, all the way through the Periodic Table to iron.

When the stars finally explode, they throw all of this material back out into the universe at speeds up to 30 percent of the speed of light to make the next generation of stars and planets. "That's how the planet and everything around us can have all of these heavy elements," Ashall said. "They were made in dying stars."

It's widely accepted that most of the heavy elements in the universe are made by way of stellar nucleosynthesis, but Ashall wants to know more - to trace particular elements to the varieties of supernovae out there and to measure at what levels those elements are made by the stars.

In his first project, Ashall will look for elements commonly found on Earth, such as manganese, chromium, cobalt, and nickel, by focusing the James Webb Telescope on one Ia supernova in particular: a third-generation white dwarf titled SN2021aefx, which exploded a year ago in the spiral galaxy NGC1566, also known as the Spanish Dancer.

"A year after it has exploded, you can look and see right through to the center of the supernova," Ashall said. "That's where all this high-density burning happens. The nucleosynthesis happens in only a few seconds, but we see the central high-density region a year after the explosion."

Ashall will use the telescope to collect imaging and spectroscopy data on elements inside SN2021aefx. Spectroscopy involves looking at spectra produced by material when it interacts with or emits light by breaking the light into its component colors, per NASA. "Spectroscopy tells us about different elemental lines," Ashall said. "If there's a line, we know the element is there."

NASA's new telescope is the first that's capable of collecting the kind of data Ashall needs. James Webb can observe in wavelength regimes that Hubble just couldn't, Ashall said.

"Hubble could mainly observe in the ultraviolet, optical, and a tiny bit in the near-infrared, but James Webb was made to observe in the near-infrared and the mid-infrared," he said. "It opens up a whole new wavelength window to do astrophysics."

Ashall's second project will focus on detecting carbon monoxide and silicon monoxide, also building blocks for life in the universe, in core-collapse supernovae. Core-collapse supernovae are massive dying stars more than eight times the mass of our sun. The supernova's name comes from the kind of explosion that occurs, Ashall said: When the massive star dies, it collapses in on itself and makes an explosion more than 100 billion times brighter than the sun.

Using the observations made by the James Webb Space Telescope, Ashall will work to not only source heavy elements, but to investigate when they were ejected by the exploding supernova. His team will study how supernovae explode by pairing the data with computer simulations of explosions.

"When we measure these lines, we can figure out velocities of the explosion," Ashall said. "So then we'll understand how fast these elements are thrown out into the universe."

Starting with the single type Ia supernova, Ashall hopes to build a sample of different varieties of supernovae to produce meaningful statistics on their role as element-makers. He's open to whatever they'll find.

"If we don't find those elements coming from supernovae, then we have to reassess what we know about how stars die and how these elements are released into the universe," Ashall said. "It's interesting either way."
Related Links
Virginia Polytechnic Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New way to make telescope mirrors could sharpen our view of the universe
Boston MA (SPX) Oct 24, 2022
Researchers have developed a new way to use femtosecond laser pulses to fabricate the high-precision ultrathin mirrors required for high-performance x-ray telescopes. The technique could help improve the space-based x-ray telescopes used to capture high-energy cosmic events involved in forming new stars and supermassive black holes. "Detecting cosmic x-rays is a crucial piece of our exploration of the universe that unveils the high-energy events that permeate our universe but are not observable in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA generated $71 billion in economic impact in 2021

NASA to resume spacewalks after investigation into 'close call'

NASA Crew-4 astronauts safely splash down in Atlantic

Eagle-designed space drones target in-orbit construction

STELLAR CHEMISTRY
UCF researcher receives NASA award to develop revolutionary rocket engine technology

Gilmour Space partners with Equipmake on advanced motors for rocket program

Gilmour Space offers tech demo satellite mission from Australia in 2024

AFRL upgrades rocket fabrication capabilities

STELLAR CHEMISTRY
A close encounter with a mysterious moon

Meteorite that smashed into Mars shook planet

Ancient bacteria might lurk beneath Mars' surface

Traces of ancient ocean discovered on Mars

STELLAR CHEMISTRY
Mengtian space lab to undergo final tests before launch

China launches third and final module for Tiangong space station: state TV

China's 'space dream': A Long March to the Moon and beyond

Thermal control designs keep astronauts cool on space station

STELLAR CHEMISTRY
SatixFy completes business combination with Endurance Acquisition Corp

Beyond Gravity wins major contract from ULA for Amazon's Project Kuiper constellation launches

Spacecraft manufacturer Apex emerges from stealth with $7.5M in funding

SpaceX California launch sends 53 more Starlink satellites into orbit

STELLAR CHEMISTRY
NASA inflatable heat shield finds strength in flexibility

D-Orbit signs launch contract with AAC SpaceQuest

International Space Station maneuvers to avoid debris

PickNik Robotics wins Space Force contract for on-orbit capture

STELLAR CHEMISTRY
Discovery could dramatically narrow search for space creatures

Starshade competition challenges students to block starlight for observing exoplanets

Discovery could dramatically narrow search for space creatures

New technique to determine age will open new era of planetary science

STELLAR CHEMISTRY
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.