24/7 Space News
SPACE MEDICINE
Using MRI, engineers have found a way to detect light deep in the brain
illustration only
Using MRI, engineers have found a way to detect light deep in the brain
by Anne Trafton for MIT News
Boston MA (SPX) May 11, 2024

Scientists often label cells with proteins that glow, allowing them to track the growth of a tumor, or measure changes in gene expression that occur as cells differentiate.

While this technique works well in cells and some tissues of the body, it has been difficult to apply this technique to image structures deep within the brain, because the light scatters too much before it can be detected.

MIT engineers have now come up with a novel way to detect this type of light, known as bioluminescence, in the brain: They engineered blood vessels of the brain to express a protein that causes them to dilate in the presence of light. That dilation can then be observed with magnetic resonance imaging (MRI), allowing researchers to pinpoint the source of light.

"A well-known problem that we face in neuroscience, as well as other fields, is that it's very difficult to use optical tools in deep tissue. One of the core objectives of our study was to come up with a way to image bioluminescent molecules in deep tissue with reasonably high resolution," says Alan Jasanoff, an MIT professor of biological engineering, brain and cognitive sciences, and nuclear science and engineering.

The new technique developed by Jasanoff and his colleagues could enable researchers to explore the inner workings of the brain in more detail than has previously been possible.

Jasanoff, who is also an associate investigator at MIT's McGovern Institute for Brain Research, is the senior author of the study, which appears in Nature Biomedical Engineering. Former MIT postdocs Robert Ohlendorf and Nan Li are the lead authors of the paper.

Detecting light
Bioluminescent proteins are found in many organisms, including jellyfish and fireflies. Scientists use these proteins to label specific proteins or cells, whose glow can be detected by a luminometer. One of the proteins often used for this purpose is luciferase, which comes in a variety of forms that glow in different colors.

Jasanoff's lab, which specializes in developing new ways to image the brain using MRI, wanted to find a way to detect luciferase deep within the brain. To achieve that, they came up with a method for transforming the blood vessels of the brain into light detectors. A popular form of MRI works by imaging changes in blood flow in the brain, so the researchers engineered the blood vessels themselves to respond to light by dilating.

"Blood vessels are a dominant source of imaging contrast in functional MRI and other non-invasive imaging techniques, so we thought we could convert the intrinsic ability of these techniques to image blood vessels into a means for imaging light, by photosensitizing the blood vessels themselves," Jasanoff says.

To make the blood vessels sensitive to light, the researcher engineered them to express a bacterial protein called Beggiatoa photoactivated adenylate cyclase (bPAC). When exposed to light, this enzyme produces a molecule called cAMP, which causes blood vessels to dilate. When blood vessels dilate, it alters the balance of oxygenated and deoxygenated hemoglobin, which have different magnetic properties. This shift in magnetic properties can be detected by MRI.

BPAC responds specifically to blue light, which has a short wavelength, so it detects light generated within close range. The researchers used a viral vector to deliver the gene for bPAC specifically to the smooth muscle cells that make up blood vessels. When this vector was injected in rats, blood vessels throughout a large area of the brain became light-sensitive.

"Blood vessels form a network in the brain that is extremely dense. Every cell in the brain is within a couple dozen microns of a blood vessel," Jasanoff says. "The way I like to describe our approach is that we essentially turn the vasculature of the brain into a three-dimensional camera."

Once the blood vessels were sensitized to light, the researchers implanted cells that had been engineered to express luciferase if a substrate called CZT is present. In the rats, the researchers were able to detect luciferase by imaging the brain with MRI, which revealed dilated blood vessels.

Tracking changes in the brain
The researchers then tested whether their technique could detect light produced by the brain's own cells, if they were engineered to express luciferase. They delivered the gene for a type of luciferase called GLuc to cells in a deep brain region known as the striatum. When the CZT substrate was injected into the animals, MRI imaging revealed the sites where light had been emitted.

This technique, which the researchers dubbed bioluminescence imaging using hemodynamics, or BLUsH, could be used in a variety of ways to help scientists learn more about the brain, Jasanoff says.

For one, it could be used to map changes in gene expression, by linking the expression of luciferase to a specific gene. This could help researchers observe how gene expression changes during embryonic development and cell differentiation, or when new memories form. Luciferase could also be used to map anatomical connections between cells or to reveal how cells communicate with each other.

The researchers now plan to explore some of those applications, as well as adapting the technique for use in mice and other animal models.

The research was funded by the U.S. National Institutes of Health, the G. Harold and Leila Y. Mathers Foundation, Lore Harp McGovern, Gardner Hendrie, a fellowship from the German Research Foundation, a Marie Sklodowska-Curie Fellowship from the European Union, and a Y. Eva Tan Fellowship and a J. Douglas Tan Fellowship, both from the McGovern Institute for Brain Research.

Research Report:"Imaging bioluminescence by detecting localized haemodynamic contrast from photosensitized vasculature"

Related Links
Department of Brain and Cognitive Sciences
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Simulated microgravity impacts human sleep and biological rhythms
London, UK (SPX) Apr 23, 2024
A study by the University of Surrey has revealed that simulated microgravity conditions notably affect sleep patterns and physiological rhythms in humans, potentially undermining astronaut health and performance during space missions. The research highlights the influence of 60 days in a head-down tilt bed rest, a common method to simulate microgravity, on various physiological parameters including immune response, inflammation levels, and musculoskeletal health. The novel focus of this study, how ... read more

SPACE MEDICINE
Boeing Starliner crewed mission postponed to May 17

Boeing's Starliner set for first crewed mission to ISS

Boeing's Starliner joins select club of crewed US spaceships

NASA Doubles Down, Advances 6 Innovative Tech Concepts to New Phase

SPACE MEDICINE
SpaceX Starlink flight lifts off in Florida; 2nd launch of day planned for California later

Long March 6C rocket joins fleet with successful inaugural launch

White Sands propulsion team evaluates 3D-printed engine component for Orion

SSC partners with Perigee Aerospace for satellite launches from Esrange

SPACE MEDICINE
Mars agriculture simulations show promise and challenges

Manganese discovery on Mars suggests ancient Earth-like conditions

NASA launches commercial studies to facilitate Mars robotic science

NASA Scientists Gear Up for Solar Storms at Mars

SPACE MEDICINE
International Support for China's Chang'e-6 Lunar Mission

Shenzhou XVII astronauts safely back from Tiangong space station

Shenzhou XVIII crew takes command at Tiangong space station

Shenzhou XVIII astronauts enter space station

SPACE MEDICINE
South Australian space companies embark on growth mission with new UniSA program

Ovzon introduces two new satellite communication services based on Ovzon 3 technology

Rocket Lab Posts Strong First Quarter with Significant Revenue and Growth Projections

Inred and SES expand satellite internet coverage in Colombia's Amazonas

SPACE MEDICINE
Energy transition risks critical mineral shortage: IEA

Microbial Enzyme Could Make Plastics Biodegradable

SwRI investigates boiling processes in partial gravity

AI Training Strategies Tested on World's Fastest Supercomputer

SPACE MEDICINE
Ozone's influence on exoplanetary climate dynamics highlighted in new research

Genomes of multicellular algal relatives reveal evolutionary clues to plant origins

Webb telescope's study suggests life on exoplanet remains unconfirmed

Nightside clouds reveal new insights on giant exoplanet Wasp-43b

SPACE MEDICINE
UAF scientist clarifies Jupiter's magnetospheric dynamics with new data

Webb telescope details weather patterns on distant exoplanet

Juno mission reveals volcanic landscapes on Io

Probing liquid water beyond Earth with advanced radar technology

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.