. 24/7 Space News .
STELLAR CHEMISTRY
Unraveling a spiral stream of dusty embers from a massive binary stellar forge
by Staff Writers
Tokyo, Japan (SPX) Sep 17, 2020

Sequence of 7 mid-IR (~10 micrometers) images of WR 112 taken between 2001 - 2019 by Gemini North, Gemini South, Keck, the Very Large Telescope (VLT), and the Subaru Telescope. The length of the white line on each image corresponds to about 6800 astronomical units.

With almost two decades of mid-infrared (IR) imaging from the largest observatories around the world including the Subaru Telescope, a team of astronomers was able to capture the spiral motion of newly formed dust streaming from the massive and evolved binary star system Wolf-Rayet (WR) 112. Massive binary star systems, as well as supernova explosions, are regarded as sources of dust in the Universe from its early history, but the process of dust production and the amount of the ejected dust are still open questions.

WR 112 is a binary system composed of a massive star in the very late stage of stellar evolution losing a large amount of mass and another massive star at the main sequence. Dust is expected to be formed in the region where stellar winds from these two stars are colliding. The study reveals the motion of the dusty outflow from the system and identifies WR 112 as a highly efficient dust factory that produces an entire Earth mass of dust every year.

Dust formation, which is typically seen in the gentle outflows from cool stars with a Sun-like mass, is somewhat unusual in the extreme environment around massive stars and their violent winds. However, interesting things happen when the fast winds of two massive stars in a binary interact.

"When the two winds collide, all Hell breaks loose, including the release of copious shocked-gas X-rays, but also the (at first blush surprising) creation of copious amounts of carbon-based aerosol dust particles in those binaries in which one of the stars has evolved to He-burning, which produces 40% C in their winds," says co-author Anthony Moffat (University of Montreal). This dust formation process is exactly what is occurring in WR 112. (Note 1)

This binary dust formation phenomenon has been revealed in other systems such as WR 104 by co-author Peter Tuthill (University of Sydney). WR 104, in particular, reveals an elegant trail of dust resembling a 'pinwheel' that traces the orbital motion of the central binary star system (see http://www.physics.usyd.edu.au/~gekko/pinwheel/movie_11.gif)

However, the dusty nebula around WR 112 is far more complex than a simple pinwheel pattern. Decades of multi-wavelength observations presented conflicting interpretations of the dusty outflow and orbital motion of WR 112. After almost 20 years uncertainty on WR 112, images from the COMICS instrument on the Subaru Telescope taken in Oct 2019 provided the final - and unexpected - piece to the puzzle.

"We published a study in 2017 on WR 112 that suggested the dusty nebula was not moving at all, so I thought our COMICS observation would confirm this," explained lead author Ryan Lau (ISAS/JAXA). "To my surprise, the COMCIS image revealed that the dusty shell had definitely moved since the last image we took with the VLT in 2016. It confused me so much that I couldn't sleep after the observing run - I kept flipping through the images until it finally registered in my head that the spiral looked like it was tumbling towards us."

Lau collaborated with researchers at the University of Sydney including Prof. Peter Tuthill and undergraduate Yinuo Han, who are experts at modeling and interpreting the motion of the dusty spirals from binary systems like WR 112. "I shared the images of WR 112 with Peter and Yinuo, and they were able to produce an amazing preliminary model that confirmed that the dusty spiral stream is revolving in our direction along our line of sight," said Lau.

The animation above shows a comparison between the models of WR 112 created by the research team alongside the actual mid-IR observations. The appearance of the model images shows a remarkable agreement with the real images of WR 112. The models and the series of imaging observations revealed that the rotation period of this dusty "edge-on" spiral (and the orbital period of the central binary system) is 20 years.

With the revised picture of WR 112, the research team was able to deduce how much dust this binary system is forming.

"Spirals are repetitive patterns, so since we understand how much time it takes to form one full dusty spiral turn (~20 years), we can actually trace the age of dust produced by the binary stars at the center of the spiral," says Lau. He points out that "there is freshly formed dust at the very central core of the spiral, while the dust we see that's 4 spiral turns away is about 80 years old.

Therefore, we can essentially trace out an entire human lifetime along the dusty spiral stream revealed in our observations. So I could actually pinpoint on the images the dust that was formed when I was born (right now, it's somewhere in between the first and second spiral turns)."

To their surprise, the team found WR 112 is a highly efficient dust factory that outputs dust at a rate of 3x10-6 solar mass per year, which is equivalent to producing an entire Earth mass of dust every year.

This was unusual given WR 112's 20-yr orbital period - the most efficient dust producers in this type of WR binary star system tend to have shorter orbital periods less than a year like WR 104 with its 220-day period. WR 112 therefore demonstrates the diversity of WR binary systems that are capable of efficiently forming dust and highlights their potential role as significant sources of dust not only in our Galaxy but galaxies beyond our own.

Lastly, these results demonstrate the discovery potential of multi-epoch mid-IR imaging with the MIMIZUKU instrument on the upcoming Tokyo Atacama Observatory (TAO). The mid-IR results from this study notably utilize the largest observatories in the world and set the stage for the next decade of astronomical discoveries with 30-m class telescopes and the upcoming James Webb Space Telescope.

Research paper


Related Links
National Institutes Of Natural Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Neutron stars contribute little, but something's making gold
Spotswood, Australia (SPX) Sep 16, 2020
Neutron star collisions do not create the quantity of chemical elements previously assumed, a new analysis of galaxy evolution finds. The research also reveals that current models can't explain the amount of gold in the cosmos - creating an astronomical mystery. The work has produced a new-look periodic table, showing the stellar origins of naturally occurring elements from carbon to uranium. All the hydrogen in the universe - including every molecule of it on Earth - was created by the Big ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's Partnership Between Art and Science: A Collaboration to Cherish

ISS may need to evade US Military cubesat

Israeli tech start-ups take on the Emirates

NASA Goddard's first virtual interns reflect on their summer experience

STELLAR CHEMISTRY
PLD Space closes new investment in tie-up with Arcano Partners

China's launch of new satellite fails

Northrop Grumman and NASA donate Shuttle boosters to California Science Center

Fiery Blast After Astra Rocket Launch Fail in Kodiak

STELLAR CHEMISTRY
Study shows difficulty in finding evidence of life on Mars

China's Mars probe travels 137 mln km

ERC Space and Robotics Event 2020

The ERC 2020 shows how to adapt in a post-pandemic world

STELLAR CHEMISTRY
Chinese spacecraft launched mystery object into space before returning to Earth

China sends nine satellites into orbit by sea launch

China's reusable spacecraft returns to Earth after 2 days

Mars-bound Tianwen 1 hits milestone

STELLAR CHEMISTRY
Dragonfly Aerospace emerges from SCS Aerospace Group

COMSAT expands hardware footprint with new Orbit Communications Systems agreement

Wanted: your ideas for ESA's future space missions

GMV announces the merger of its UK Company and NSL

STELLAR CHEMISTRY
Giant particle accelerator in the sky

Making waves in space

Announcing Homestead: satellite ground station coming soon to Chippewa County

Earth's Van Allen radiation belts double as particle accelerator

STELLAR CHEMISTRY
Scientists find gas on Venus linked to life on Earth

How protoplanetary rings form in primordial gas clouds

A warm Jupiter orbiting a cool star

Venus is one stop in our search for life

STELLAR CHEMISTRY
Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other

Atomistic modelling probes the behavior of matter at the center of Jupiter

Technology ready to explore subsurface oceans on Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.