. 24/7 Space News .
ENERGY TECH
Uncovering a novel way to bring to Earth the energy that powers the sun and stars
by Staff Writers
Plainsboro NJ (SPX) Jun 09, 2022

From left: PPPL physicists Ken Hill, Lan Gao, and Brian Kraus

Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have uncovered critical new details about fusion facilities that use lasers to compress the fuel that produces fusion energy. The new data could help lead to the improved design of future laser facilities that harness the fusion process that drives the sun and stars.

Fusion combines light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Major experimental facilities include tokamaks, the magnetic fusion devices that PPPL studies; stellarators, the magnetic fusion machines that PPPL also studies and have recently become more widespread around the world; and laser devices used in what are called inertial confinement experiments.

The researchers explored the impact of adding tungsten metal, which is used to make cutting tools and lamp filaments, to the outer layer of plasma fuel pellets in inertial confinement research. They found that tungsten boosts the performance of the implosions that cause fusion reactions in the pellets. The tungsten helps block heat that would prematurely raise the temperature at the center of the pellet.

The research team confirmed the findings by making measurements using krypton gas, sometimes used in fluorescent lamps. Once added to the fuel, the gas emitted high-energy light known as X-rays that was captured by an instrument called a high-resolution X-ray spectrometer. The X-rays conveyed clues about what was happening inside the capsule.

"I was excited to see that we could make these unprecedented measurements using the technique we have been developing these past few years. This information helps us evaluate the pellet's implosion and helps researchers calibrate their computer simulations," said PPPL physicist Lan Gao, lead author of the paper reporting the results in Physical Review Letters. "Better simulations and theoretical understanding in general can help researchers design better future experiments."

The scientists performed the experiments at the National Ignition Facility (NIF), a DOE user facility at Lawrence Livermore National Laboratory. The facility shines 192 lasers onto a gold cylinder, or hohlraum, that is one centimeter tall and encases the fuel. The laser beams heat the hohlraum, which radiates X-rays evenly onto the fuel pellet within.

"It's like an X-ray bath," said PPPL physicist Brian Kraus, who contributed to the research. "That's why it's good to use a hohlraum. You could shine lasers directly onto the fuel pellet, but it's difficult to get even coverage."

Researchers want to understand how the pellet is compressed so they can design future facilities to make the heating more efficient. But getting information about the pellet's interior is difficult. "Since the material is very dense, almost nothing can get out," Kraus said. "We want to measure the inside, but it's hard to find something that can go through the fuel pellet's shell."

"The results presented in Lan's paper are of great importance to inertial fusion and provided a new method of characterizing burning plasmas," said Phil Efthimion, head of the Plasma Science and Technology Department at PPPL and leader of the collaboration with NIF.

The researchers used a PPPL-designed high-resolution X-ray spectrometer to collect and measure the radiated X-rays with more detail than had been measured before. By analyzing how the X-rays changed every 25 trillionth of a second, the team was able to track how the plasma changed over time.

"Based on that information, we could estimate the size and density of the pellet core more precisely than before, helping us determine the efficiency of the fusion process," Gao said. "We provided direct evidence that adding tungsten increases both density and temperature and therefore pressure in the compressed pellet. As a result, fusion yield increases."

"We are looking forward to collaborating with theoretical, computational, and experimental teams to take this research further," she said.

Research Report:Hot Spot Evolution Measured by High-Resolution X-Ray Spectroscopy at the National Ignition Facility


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
For plasma with a hot core and cool edges, Super-H mode shows promise
Washington DC (SPX) May 18, 2022
Future fusion reactors have a conundrum: how to maintain a plasma core that is hotter than the surface of the sun without melting the device walls. Researchers call this challenge "core-edge integration." One method of cooling the plasma edge is to inject impurities such as nitrogen. The impurities absorb heat and release the energy as light that dissipates evenly across the walls. New research finds that a previously identified operating regime called Super H-mode can leverage the use of impuriti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Dragon Mission on Hold as Astronauts Conduct Eye Exams, Spacesuit Work

What the Voyager probes can teach humanity about immortality and legacy

NASA Moon Mission Set to Break Record in Navigation Signal Test

Bezos's Blue Origin makes 5th crewed flight into space

ENERGY TECH
SpaceX launches Nilesat 301 satellite, recovers Falcon 9 first stage

Subscale booster motor for future Artemis missions fires up at Marshall

NRL CIRCE spacecraft to be part of historic UK launch

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

ENERGY TECH
Bacterial cellulose enables microbial life on Mars

Mars is all shook up

Balmy Days on Mars - Sol 3496

Beautiful Weekend Views - Sols 3493-3495

ENERGY TECH
China sends three astronauts to Tiangong Space Station

Shenzhou XIV astronauts transporting supplies into space station

China discloses tasks of Shenzhou-14 crewed space mission

Three Chinese astronauts arrive at space station

ENERGY TECH
Maine looks to grow space economy, for students, research and business

French astronaut Pesquet calls for European space independence

Solid rocket boosters will support existing ULA customers and Amazon's Project Kuiper

DXC Boosts Connectivity for Space Exploration

ENERGY TECH
James Webb telescope hit by micrometeoroid: NASA

SEAKR Engineering Demonstrates Optical Communications on DARPA's Mandrake 2 Satellites

Helium shortage deflates American celebrations

Liquid platinum at room temperature

ENERGY TECH
Geology from 50 light-years away

Asteroid samples contain 'clues to origin of life': Japan scientists

Colossal collisions linked to solar system science

Abell 2146: Colossal Collisions Linked to Solar System Science

ENERGY TECH
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.