. 24/7 Space News .
SPACE MEDICINE
USC works with Polaris Dawn to study in-flight space medicine
by Staff Writers
Los Angeles CA (SPX) Nov 29, 2022

stock image only

Today's spaceflights typically last a few days to a few months, so onboard medical treatment is mostly limited to first aid. But researchers are increasingly exploring new terrain-known as in-flight space medicine-that will be critical for maintaining astronauts' health during longer missions, such as the 21-month roundtrip to Mars.

Polaris Dawn, the first of three missions in the Polaris Program, is pursuing an array of new frontiers in space. Estimated to launch no earlier March 1, 2023, its crew will aim to achieve the highest-ever orbit of Earth and attempt the first-ever commercial spacewalk. They will also spend up to five days conducting more than 38 studies of human health in space, including a Keck School of Medicine of USC-led effort to study a new approach to X-ray imaging onboard.

"Modern X-ray equipment isn't practical to send into space because of its significant mass and electricity requirements," said John Choi, MD, PhD, a resident physician in interventional radiology at the Keck School of Medicine of USC and the leader of the project. "But in order to do true clinical medicine in space during a mission-in-flight space medicine-we're going to need radiology."

Ultrasound is the primary diagnostic imaging method currently used in space because ultrasound equipment is relatively portable and does not require much power. But it cannot identify certain life-threatening medical issues, such as a blood clot in a major artery of the heart, lungs or brain.

For that reason, Choi and his colleagues believe that X-ray imaging and radiology-in addition to other medical capabilities and specialties such as surgery, anesthesia and emergency medicine-are crucial for effectively responding to medical emergencies in space. They are now exploring an innovative method that could allow clinicians to use the ambient radiation in space (natural radiation that is always present) to collect X-ray images with minimal equipment.

"In space, we know there's more ionizing radiation than on Earth," Choi said. "Can we take advantage of that radiation as a source that allows us to capture an image?"

Harnessing radiation in space
To answer that question, Choi and his team are leveraging technology from a simpler form of X-ray equipment than modern-day digital detectors: film. Because of its lower mass and power requirements, using this simpler equipment to absorb radiation for image generation could eliminate the practical problems with sending equipment into space.

In analog X-ray film imaging, a special "intensifying screen" converts radiation into visible light, which can then be developed on film. The researchers are sending a piece of this intensifying screen into space to test whether there is enough ambient radiation to cause the screen to glow.

Choi and his team are assembling the materials needed to conduct the experiment and the researchers are writing instructions for the Polaris Dawn crew to use when conducting the experiment onboard.

Enhancing health on Earth
The experiment, known as a "proof of principle," is just the first step to establish whether ambient radiation in space is sufficient to generate X-ray images. If successful, researchers will then need to prove that they can conduct clinically meaningful X-ray exams using the new method.

A technological breakthrough could also offer helpful insights for X-rays on Earth, such as a way to collect images with less radiation. In addition to its goal of advancing human health in space, the Polaris Dawn mission seeks to gain scientific knowledge that could improve medical care closer to home.

"The mission profile of Polaris Dawn affords us some great opportunities to expand our collective knowledge about the human body in space and associated applicability here on Earth," said Jared Isaacman, mission commander of Polaris Dawn. "Our science and research agenda will enhance the body of knowledge for future long-duration spaceflight which will take us back to the Moon and on to Mars; as well as progress our knowledge and understanding for humankind here on Earth."


Related Links
Polaris Program
Keck School of Medicine of USC
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
New CRISPR-based tool inserts large DNA sequences at desired sites in cells
Boston MA (SPX) Nov 25, 2022
Building on the CRISPR gene-editing system, MIT researchers have designed a new tool that can snip out faulty genes and replace them with new ones, in a safer and more efficient way. Using this system, the researchers showed that they could deliver genes as long as 36,000 DNA base pairs to several types of human cells, as well as to liver cells in mice. The new technique, known as PASTE, could hold promise for treating diseases that are caused by defective genes with a large number of mutations, s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
At NASA, France's Macron and US vow strong space cooperation

SpaceX resupply cargo capsule docks with International Space Station

Japan space agency says research team tampered with ISS experiment

NASA temporarily loses communication with Orion spacecraft

SPACE MEDICINE
Pulsar Fusion funded by the UK Govt to construct a nuclear based space engine

Arianespace Ariane 6 to launch Intelsat satellites

SpaceX again postpones Japanese moon lander launch

NASA selects Rocket Lab to launch TROPICS Mission

SPACE MEDICINE
NASA May Have Landed on a Martian Megatsunami Deposit Nearly 50 Years Ago

Analyzing the rhythmically layered bedrock above the marker band: Sols 3669-3670

NASA awards contract for Mars Sample Return systems

Back to the Marker Band - Sols 3667-3668

SPACE MEDICINE
China's six astronauts in two missions make historic gathering in space

China latest astronaut crew docks at the Tiangong Space Station

Tiangong space station open to world

China ready to implement moon landing project

SPACE MEDICINE
Calling all space detectives to hack an exoplanet

AST SpaceMobile announces pricing of upsized $75M public offering of Class A common stock

SiriusXM commissions Maxar to build two satellites

IAU CPS Statement on BlueWalker 3

SPACE MEDICINE
NASA awards contract for 3D-printed construction on moon, Mars

AWS successfully runs AWS compute and machine learning services on an orbiting satellite

Kayhan Space awarded grant to develop autonomous collision avoidance capabilities in space

Eutelsat selects Thales Alenia Space to build a new flexible software-defined satellite

SPACE MEDICINE
Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

NASA's Webb reveals an exoplanet atmosphere as never seen before

SPACE MEDICINE
The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.