. 24/7 Space News .
TIME AND SPACE
UK scientists have created an 'eternal engine' to keep the next generation of atomic clock ticking.
by Staff Writers
Falmer UK (SPX) Aug 11, 2022

Microcombs are a fundamental part of future optical atomic clocks - file illustration only

Atomic clock precision timing is essential for systems such as global navigation, satellite mapping, establishing the composition of exoplanets and the next generations of telecommunication. But atomic clocks are currently massive devices - weighing hundreds of kilograms - which need to be housed within precise, difficult-to-maintain conditions. That's why scientists around the world are racing to build portable versions that will work in real-world settings, and could replace existing satellite navigation systems, such as GPS and Galileo.

Now, research undertaken at the University of Sussex, and continued at Loughborough University, has solved a major stumbling block in the development of these portable atomic clocks, by working out how to reliably switch 'on' their counting device - and keep them running.

Microcombs are a fundamental part of future optical atomic clocks - they allow one to count the oscillation of the 'atomic pendulum' in the clock, converting the atomic oscillation at hundreds of trillions of times per second to a billion times a second - a gigahertz frequency, that modern electronic systems can easily measure.

Based on electronic compatible optical microchips, microcombs are the best candidates to miniaturise the next generation of ultraprecise timekeeping. They are cutting-edge laser technology sources, made up of ultraprecise laser lines, equally spaced in the spectrum, which resemble a comb.

This peculiar spectrum opens an array of applications blending ultraprecise time keeping and spectroscopy which could lead to the discovery of exoplanets, or ultra-sensitive medical instruments based simply on breath scans.

"None of this will ever be possible if the microcombs are so sensitive that they cannot maintain their state even if someone just enters in the lab," said Professor Alessia Pasquazi, who began this ERC and EPSRC funded project at the University of Sussex before moving to Loughborough University with her team, last month.

In a new paper published in the journal Nature, research undertaken at the University of Sussex by Prof Pasquazi and her team has identified a way to allow the system to start by itself and remain in a stable state - essentially being self-recovering.

"We have basically an 'eternal engine' - like Snowpiercer if you watch it - which always comes back to the same state if something happens to disrupt it," said Prof Pasquazi.

"A well-behaved microcomb uses a special type of wave, called a cavity-soliton, which is not simple to get. Like the engine of a petrol car, a microcomb prefers to stay in an 'off-state'. When you start your car, you need a starter motor that makes the engine rotate properly.

"At the moment, microcombs do not have a good 'starter-motor'. It is like having your car with the battery constantly broken, and you need someone to push it downhill every time you need to use it, hoping that it will start. If you imagine that usually a cavity-soliton disappears in a microcomb laser when someone simply talks in the room, you see that we have a problem here."

Professor Marco Peccianti, who worked on the research at the University of Sussex and directs the newly funded Emergent Photonic Research Centre at Loughborough University, added: "In 2019 we had already demonstrated that we could use a different type of wave to get microcombs.

"We called them laser cavity solitons because we embedded directly the microchip in a standard laser and we obtained a great boost in the efficiency".

"We have shown now that our soliton can be naturally turned into the only state of the system, and we call this process 'self-emergence'."

Dr Juan Sebastian Totero Gongora, EPSRC research fellow in quantum technologies in Loughborough explained: "It works like a simple thermodynamical system, which is ruled by 'global variables,' like temperature and pressure."

"At atmospheric pressure, you are always sure to find water as ice at -5 degrees or as vapour above 100 degrees, whatever has happened to the water molecules before."

Dr Maxwell Rowley, who obtained his PhD at the University of Sussex developing this system with Prof Pasquazi, and who now works with CPI TMD Technologies, a division of Communications and Power Industries (CPI), where work continues to commercialize the microcomb, added: "Similarly, when we set the electrical current driving the laser to the appropriate value, here we are guaranteed that the microcomb will operate in our desired soliton state.

"It is a set-and-forget system - an 'eternal engine' that always recover the correct state."

The paper, Self-emergence of robust solitons in a micro-cavity, has been published this week in collaboration with colleagues at the University of Sussex, City University of Hong Kong, the Xi'an Institute of Optics and Precision Mechanics, in China, Swinburne University of Technology in Australia, the INRS-EMT in Canada and the University of Strathclyde.

The pursuit of this technology is a key goal of the newly funded Emergent Photonics Laboratory Research Centre, which will focus on cutting edge optical technologies at Loughborough.

The microcomb is a core component for creating a portable and ultra-accurate time reference, which is critically needed for the current and next generation of telecommunication (5 and 6G+ and fibre communication), network synchronization (e.g. electrical network) and it will reduce our dependence on the GPS.

The self-emergent microcombs will be directly used in optical-fibre based calcium ion references, being pursued under Innovate UK support and the leadership of Professor Matthias Keller at the University of Sussex with CPI TMD technologies, and in a broader collaboration on Quantum Technologies including co-author Professor Roberto Morandotti at the Canadian Institut national de la recherche scientifique (INRS).

Prof Pasquazi said: "Microcombs are expected to revolutionize the telecommunication networks, which use many different colours to transfer as much information as possible.

"While networks currently use separate lasers for every colour, microcombs will provide a compact and power-efficient alternative, with the possibility of also transferring ultra-precise timekeeping.

"The pursuit of next generation telecom technologies is one of the goals of our collaboration with Swinburne University and co-author Professor David Moss.

"We are collaborating with their astronomy department, hopefully one day these 'optical rulers' will enable their search for exoplanets."


Related Links
University of Sussex
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Earth spun faster June 29, causing shortest day since 1960s
Washington DC (UPI) Aug 1, 2021
The Earth spun faster around its axis on June 29, making it the shortest day since the planet's rotation began being measured with atomic clocks in the 1960s. Earth completed one spin in 1.59 milliseconds shy of the typical 24 hours on June 29, according to Time and Date and The Guardian. The record comes as Earth has seen consistently shorter days in the past few years. Earth's spin has actually been slowing down over time, causing days to get longer rather than shorter. A single day wo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Goddard's 'Web Around Asteroid Bennu' Shows in SIGGRAPH Film Fest

US should end ISS collaboration with Russia

Exposed! International Space Station tests organisms, materials in space

Russia launches Iranian satellite amid Ukraine war concerns

TIME AND SPACE
J-Space partners with Virgin Orbit to bring sovereign air-launch capability to South Korea

The space economy gets major tech advancement with hybrid mobility packages

NASA moves up launch of massive moon rocket

CST signs agreement with Gilmour Space for the launch of 50kg to LEO

TIME AND SPACE
NASA explains strange stringy object photographed by Perseverance rover

Surprise, surprise: Subsurface water on Mars defy expectations

Ten Earth years later and Curiosity is still exploring Mars

WVU space robotics research helps Mars rovers find their footing

TIME AND SPACE
Wentian's small mechanical arm completes in-orbit tests

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

Harvest from heavenly breeding

Chinese commercial carrier rocket Smart Dragon-3 completes ground tests

TIME AND SPACE
HKATG tooling up for satellite mass production

SpaceX launches 46 new Starlink satellites into orbit

Space Accelerator catalyses multi-million pound investment

AST SpaceMobile's BlueWalker 3 test satellite arrives at Cape Canaveral

TIME AND SPACE
Antaris close seed funding round to accelerate development of software solutions for space

Kayhan Space unveils next-gen spaceflight safety platform

Spaceflight prepares propulsive Sherpa OTV to launch on upcoming Starlink mission

The future of NASA's laser communications

TIME AND SPACE
Scientists detect newborn planet that could be forming moons

Brightest stars in the night sky can strip Neptune-sized planets to their rocky cores

A cosmic tango points to a violent and chaotic past for distant exoplanet

New research on the emergence of the first complex cells challenges orthodoxy

TIME AND SPACE
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.