. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers capitalize on early access to James Webb Space Telescope data
by Staff Writers
Irvine CA (SPX) Nov 15, 2022

Advanced instruments aid in development of coherent picture of extragalactic nucleus.

First in line to receive data transmissions from the James Webb Space Telescope, a team of astronomers at the University of California, Irvine and other institutions is using the unprecedentedly clear observations to reveal the secret inner workings of galaxies.

In a paper published in The Astrophysical Journal Letters, the researchers describe their examination of the nearby galaxy NGC 7469 with the JWST's ultrasensitive mid-infrared detection instruments. They conducted the most detailed analysis yet of the interactions between an active galactic nucleus dominated by a supermassive black hole and the star-forming galaxy regions surrounding it.

"What we are seeing in this system has been a surprise for us," said lead author Vivian U, UCI assistant research scientist in physics and astronomy and member of one of 13 JWST Early Release Science teams. "Viewing this galaxy face-on, we are able to see not only winds from the supermassive black hole blowing in our direction but also 'shock heating' of the gas induced by said winds very close to the central active galactic nucleus, which is something we had not expected to be able to discern so clearly."

U noted that shock heating happens when wind from a black hole in a galaxy's center pushes on surrounding dense gas, creating a shock front that deposits energy into the interstellar medium. This effect could influence star formation in two opposing ways, she said. By compressing the gas into molecular form, it can foster the birth of new stars, or excessively strong feedback processes from the galactic wind can prevent birth by destroying stellar nurseries.

According to U, NGC 7469 is a Seyfert galaxy with an active center hosting a supermassive black hole and a ring of star-forming regions. For decades, astronomers have tried to study the detailed dynamics of these systems, which make up about 10 percent of all galaxies, but dust - commonly abundant at the center of them - has made that a challenge. The JWST gave U and her co-authors access to what lies behind the dust veil.

Using the telescope's 6.5-meter mirror and advanced suite of tools, including the Mid-Infrared Instrument, the researchers were able to map several key ionized and molecular gas emission lines that inform astronomers about the conditions of the interstellar medium - the gas, dust and radiation that exist between star systems in a galaxy - pinpointing star-forming regions within a starburst ring. They also detected a high-velocity outflow of ionized gas that's "blueshifted," meaning it's coming toward the observer versus traveling in the opposite direction.

"The newly realized capability of mid-infrared integral field spectroscopy from the JWST's Mid-Infrared Instrument now allows us to see not just what's there behind the dust but also how things are moving at very small scales that we couldn't previously see at these wavelengths," U said.

"We now have a more coherent picture - at least in this system - of how the active galactic nucleus is driving out gas and how that's impacting the surrounding material," she added. "We see definitive signs of the black hole-driven winds dumping energy out into the interstellar medium."

U said that a significant contributor to the roiling dynamics of NGC 7469 is the fact that it's merging with a second galaxy.

"The interaction with another galaxy means that galactic materials are being moved around as a result of tidal forces, and they file toward the center of the galaxy system when angular momentum is lost. This process tends to make the galaxy center very dusty," she explained. "That's why you need instruments like the ones aboard the JWST that allow us to peer through the dust and facilitate our understanding of the dusty cores of merging galaxies."

Today's publication is among the first in a series of papers from U and her collaborators that analyze data from the JWST Early Release Science program No. 1328. According to U, the spectacular imaging and spectroscopic data from the JWST offer an in-depth view of how galaxies evolve through the merging mechanism and enable her team to delve into the physics of star formation, black hole growth and feedback in nearby merging galaxies.

Research Report:GOALS-JWST: Resolving the Circumnuclear Gas Dynamics in NGC 7469 in the Mid-infrared


Related Links
University of California - Irvine
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
2400 new eyes on the sky to see cosmic rainbows
Tokyo, Japan (SPX) Nov 14, 2022
The Subaru Telescope successfully demonstrated engineering first light with a new instrument that will use about 2400 fiberoptic cables to capture the light from heavenly objects. Full operation is scheduled to start around 2024. The ability to observe thousands of objects simultaneously will provide unprecedented amounts of data to fuel Big Data Astronomy in the coming decade. In addition to cameras, astronomers also use instruments known as spectrographs to study celestial object. A spectrograph ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
AFRL awards contract for pioneering spacecraft in region of Moon

Calnetix Technologies' high-speed blower system delivered to ISS

SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

STELLAR CHEMISTRY
To orbit and back with Space Rider

NASA Awards SpaceX Second Contract Option for Artemis Moon Landing

LOFTID inflatable heat shield test a success, early results show

Rocket Factory Augsburg to use test infrastructure at DLR Lampoldshausen

STELLAR CHEMISTRY
Mars was covered by 300 meter deep oceans

Perseverance investigates intriguing Martian bedrock

Martian dust storms churn up Earth-like clouds

The first life in our solar system may have been on Mars

STELLAR CHEMISTRY
Shenzhou XIV taikonauts perform third spacewalk

Galactic Energy carries out fourth successful launch

China launches spacecraft carrying cargo for space station

China's cargo spacecraft sets new world record

STELLAR CHEMISTRY
Einstein Industries Ventures joins ESA Investor Network

Satellite broadband firms join forces

SFL contracted for 15 additional HawkEye 360 RF geolocation microsatellites

AE Industrial Partners completes investment in York Space Systems

STELLAR CHEMISTRY
How NASA's Deep Space Network Supports the Agency's Missions

NASA Webb Telescope micrometeoroid mitigation update

NASA's Artemis I cameras to offer new views of Orion, Earth, Moon

ESA experiences COP27 using a space-empowered metaverse

STELLAR CHEMISTRY
Colliding magnetic fields reveal unknown planets

"Polluted" white dwarfs show that stars and planets grow together

Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

STELLAR CHEMISTRY
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.