|
. | . |
|
by Staff Writers Geneva, Switzerland (SPX) Mar 07, 2012
For almost fifteen years Professor Nicolas Gisin and his physicist collaborators have been entangling photons. If this exercise seems to them perhaps henceforth trivial, it continues to elude us ordinary humans. The laws that govern the quantum world are so strange that they completely escape us human beings confronted with the laws of the macroscopic world. This apparent difference in nature between the infinitesimally small and our world poses the question of what link exists between the two. However these two worlds do interact. To realise this, one must folow the latest experiment of the Group of Applied Physics (GAP). Nicolas Gisin, researcher Mikael Afzelius and their team have actually produced the entanglement of two macroscopic crystals, visible to the naked eye, thanks to a quantum particle, a photon, otherwise known as a particle of light. To achieve this exploit, the physicists developed a complex device to which they hold the key. After a first system that allows them to verify that they've actually managed to release one, and only one, photon, a condition essential to the success of the experiment, a second de- vice "slices" this particle in two. This splitting allows the researchers to obtain two entangled photon halves. In other words, even though they are not in the same location, the two halves continue to behave as if they were one.
Wait for the photons to exit That's simple ... or nearly! They just have to wait for the two particles to exit the crystals - since they exit after a rather brief period of about 33 nanoseconds - and to verify that it really is the entangled pair. "That's exactly what we found since the two photons that we cap- tured exiting the crystals showed all the properties of two quantum particles behaving as one, characterised by their simultaneity in spite of their separation", Fe'lix Bussie`res rejoices, one of the authors of the article. In addition to its fundamental aspect, this experiment carries with it potential applications. Actually, for the specialists in quantum entan- glement, this phenomenon has the unpleasant habit of fading when the two entangled quantum objects are too far from one another. This is problematic when one envisions impregnable quantum cryptography networks which could link two distant speakers separated by several hundreds or even thousands of kilometres. "Thanks to the entanglement of crystals, we can now imagine inventing quantum repeaters", Nicolas Gisin explains, "in other words, the sorts of terminals that would allow us to relay entanglement over large distances. We could then also create memory for quantum com- puters." Entanglement still has many surprises in store for us.
Related Links Universite de Geneve Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |