. 24/7 Space News .
EARTH OBSERVATION
Tonga volcano to have smaller cooling impact on climate change than first thought
by Staff Writers
Beijing, China (SPX) Mar 02, 2022

FY-4B Satellite captured the eruption of Hunga Tonga-Hunga Ha'apai volcano and monitored the diffusion of volcanic ash clouds. See video here

A fresh analysis of the possible cooling effect of the sulfur dioxide injected into the atmosphere by the Hunga Tonga-Hunga Ha'apai volcano in January 2022 has concluded that the impact will be much smaller than initially thought-but the researchers responsible add some major caveats to this conclusion.

An undersea volcano at Hunga Tonga-Hunga Ha'apai (HTHH) erupted violently on 15th January 2022, which raised wide public concern about its impact on global climate. Sulfur dioxide (SO2) injected into the stratosphere after volcanic eruptions is oxidized and converted to sulfate aerosols. These aerosols linger there for one or two years and while there, work to reduce incoming solar radiation, resulting in a short period of global cooling.

The surface temperature returns to normal as the volcanic aerosols dissipate, and so a single volcanic eruption is not enough to alter the long-term global warming trend, unless there are clusters of volcanic eruption that can persist through centuries as is suggested have happened during the Little Ice Age in the past millennium.

The largest volcanic eruption of the last 500 years, the eruption of Mount Tambora in Indonesia in April 1815 caused the so-called "Year Without a summer" in the following year in many parts of the world. There is a reduction in annual mean surface temperature over the tropics and northern hemisphere by 0.4-0.8C.

But the Tambora eruption emitted 53-58 terrograms (Tg) of SO2. Satellite measurements of the eruption at HTHH-which has erupted multiple times over the past century-showed that its volcanic ash has reached an altitude of 30 kilometers deep into the stratosphere, with a total mass of only about 0.4 Tg.

One previously reported initial estimate placed the reduction in global surface air temperature at between 0.03 and 0.1C over the next one to two years as a result of the HTHH eruption.

"This reported initial estimate may have overestimated the impact as it did not take into account the location where the eruption occurred, which alters the spatial distribution of stratospheric sulfate aerosols-a variable that can alter results substantially", said Tianjun Zhou of the Institute of Atmospheric Physics at the Chinese Academy of Sciences, "This is because southern hemisphere volcanic eruption emissions are largely confined to circulating in the same hemisphere and the tropics, with less of an impact on the northern hemisphere. This in turn leads to a weaker global cooling than those of northern hemispheric and tropical volcanoes".

To arrive at a more accurate assessment, modelling needs to take into account the latitude of the release of sulfate aerosols. Correcting for this however was something of a challenge, as there are few southern volcanic eruptions similar to that of HTHH in the historical record. Fortunately, climate-model simulations that use large southern volcanic eruptions in the last millennium overall provided a useful reference. In this way, the researchers found a significant correlation between the intensity of 70 selected volcanic eruptions over the last millennium and the global mean surface temperature response in the first year after eruption.

They then picked six particularly large tropical eruptions in model simulations and scaled the surface temperature response in line with the intensity of the 1991 Mount Pinatubo eruption where 20 Tg of SO2 were ejected. The results of the model simulations were found to be similar to real-world observations, suggesting their modelling work was on the right track.

These results were then scaled down for the HTHH eruption with its stratospheric injection of 0.4 Tg of SO2. The final results showed that that the global mean surface temperature will decrease by only 0.004C in the first year after the HTHH eruption. This is within the scope of internal variability of the climate system.

The cooling in the southern hemisphere will be stronger than in other parts of the world, with the strongest cooling of more than 0.01C occurring in parts of Australia and South America. The cooling over most of China will be less than 0.01C.

This means that the eruption of HTHH will not be strong enough to overwhelm the longer term global warming tendency.

The researchers did include one caveat however to these conclusions: This would be the case if the HTHH eruption is a one-time-only event. No explosive eruptions have been detected at HTHH since the Jan. 15 event so far. However, it may become active again in the future as this volcano has erupted many times over the past 100 years.

"As a result, we should keep monitoring the activity of HTHH in the coming days, months, and years," said Professor Zhou.

In line with such monitoring efforts, the team will be extending their research by running some experiments based on ideal cases (scenario hypothesis in their simplification, but useful to make the models easier to understand) to try to reveal the potential climate impact of a larger HTHH volcanic eruptions should they occur in the near future.

The analysis appears in the journal Advances in Atmospheric Sciences on Mar. 1.

Research Report: "Volcanoes and climate: Sizing up the impact of the recent Hunga Tonga-Hunga Ha'apai volcanic eruption from a historical perspective"


Related Links
Institute of Atmospheric Physics, Chinese Academy of Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NASA develops technology to dissect the lower atmosphere
Greenbelt MD (SPX) Feb 24, 2022
The part of the atmosphere closest to the planet is the hardest to measure from space due to the volume of gases above it. Studying Earth's planetary boundary layer, or PBL, will enable scientists to better understand the interaction between Earth's surface and weather and how that evolves in a global, changing climate. "The planetary boundary layer is where we live and where we experience weather," NASA Researcher Dr. Antonia Gambacorta said. "It's been studied in great detail with lots of ground ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
How to reach a tumbling target in space

NASA exploring ways to keep ISS afloat without Russian help: official

Astronaut Matthias Maurer marks his first 100 days in space

Tycoons bound for ISS aren't tourists, insists space company

EARTH OBSERVATION
Rocket Lab selects Virginia for Neutron launch pad and manufacturing complex

New rocket to be partially reusable

NASA awards SpaceX additional crew flights to Space Station

SpaceX Axiom crew nears final training for first all-private mission to ISS

EARTH OBSERVATION
Sols 3398-3400: The Road Ahead

First Multiple-Sol Drive

Ch'al-Type Rocks at Santa Cruz

Dusty Flight 19 completed and looking ahead to Flight 20

EARTH OBSERVATION
China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

EARTH OBSERVATION
Intelsat announces successful emergence from financial restructuring process

Rocket Lab Selected by MDA to Design and Build Spacecraft for Globalstar

Successful first year for UK-Australia Space Bridge

SpaceX to launch IoT tech demo satellites for Plan-S

EARTH OBSERVATION
Using artificial intelligence to find anomalies hiding in massive datasets

Sanctions on Russia add to troubles facing global helium industry

Neural networks behind social media can consume an infinite amount of energy

Shares in Russia's top aluminium producer plunge

EARTH OBSERVATION
Ice-free in icy worlds

New astrobiology research predicts life 'as we don't know it'

Roman Space Telescope could snap first image of a Jupiter-like world

'Tatooine-like' exoplanet spotted by ground-based telescope

EARTH OBSERVATION
New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.