. 24/7 Space News .
TIME AND SPACE
This exotic particle had an out-of-body experience; these scientists took a picture of it
by Theresa Duque for LBL News
Berkeley CA (SPX) Aug 25, 2021

Illustration of an electron breaking apart into spinon ghost particles and chargons inside a quantum spin liquid. (Credit: Mike Crommie et al./Berkeley Lab)

Scientists have taken the clearest picture yet of electronic particles that make up a mysterious magnetic state called a quantum spin liquid (QSL).

The achievement could facilitate the development of superfast quantum computers and energy-efficient superconductors.

The scientists are the first to capture an image of how electrons in a QSL decompose into spin-like particles called spinons and charge-like particles called chargons.

"Other studies have seen various footprints of this phenomenon, but we have an actual picture of the state in which the spinon lives. This is something new," said study leader Mike Crommie, a senior faculty scientist at Lawrence Berkeley National Laboratory (Berkeley Lab) and physics professor at UC.

"Spinons are like ghost particles. They are like the Big Foot of quantum physics - people say that they've seen them, but it's hard to prove that they exist," said co-author Sung-Kwan Mo, a staff scientist at Berkeley Lab's Advanced Light Source. "With our method we've provided some of the best evidence to date."

A surprise catch from a quantum wave
In a QSL, spinons freely move about carrying heat and spin - but no electrical charge. To detect them, most researchers have relied on techniques that look for their heat signatures.

Now, as reported in the journal Nature Physics, Crommie, Mo, and their research teams have demonstrated how to characterize spinons in QSLs by directly imaging how they are distributed in a material.

To begin the study, Mo's group at Berkeley Lab's Advanced Light Source (ALS) grew single-layer samples of tantalum diselenide (1T-TaSe2) that are only three-atoms thick. This material is part of a class of materials called transition metal dichalcogenides (TMDCs). The researchers in Mo's team are experts in molecular beam epitaxy, a technique for synthesizing atomically thin TMDC crystals from their constituent elements.

Mo's team then characterized the thin films through angle-resolved photoemission spectroscopy, a technique that uses X-rays generated at the ALS.

Using a microscopy technique called scanning tunneling microscopy (STM), researchers in the Crommie lab - including co-first authors Wei Ruan, a postdoctoral fellow at the time, and Yi Chen, then a UC Berkeley graduate student - injected electrons from a metal needle into the tantalum diselenide TMDC sample.

Images gathered by scanning tunneling spectroscopy (STS) - an imaging technique that measures how particles arrange themselves at a particular energy - revealed something quite unexpected: a layer of mysterious waves having wavelengths larger than one nanometer (1 billionth of a meter) blanketing the material's surface.

"The long wavelengths we saw didn't correspond to any known behavior of the crystal," Crommie said. "We scratched our heads for a long time. What could cause such long wavelength modulations in the crystal? We ruled out the conventional explanations one by one. Little did we know that this was the signature of spinon ghost particles."

How spinons take flight while chargons stand still
With help from a theoretical collaborator at MIT, the researchers realized that when an electron is injected into a QSL from the tip of an STM, it breaks apart into two different particles inside the QSL - spinons (also known as ghost particles) and chargons. This is due to the peculiar way in which spin and charge in a QSL collectively interact with each other. The spinon ghost particles end up separately carrying the spin while the chargons separately bear the electrical charge.

In the current study, STM/STS images show that the chargons freeze in place, forming what scientists call a star-of-David charge-density-wave. Meanwhile, the spinons undergo an "out-of-body experience" as they separate from the immobilized chargons and move freely through the material, Crommie said. "This is unusual since in a conventional material, electrons carry both the spin and charge combined into one particle as they move about," he explained. "They don't usually break apart in this funny way."

Crommie added that QSLs might one day form the basis of robust quantum bits (qubits) used for quantum computing. In conventional computing a bit encodes information either as a zero or a one, but a qubit can hold both zero and one at the same time, thus potentially speeding up certain types of calculations. Understanding how spinons and chargons behave in QSLs could help advance research in this area of next-gen computing.

Another motivation for understanding the inner workings of QSLs is that they have been predicted to be a precursor to exotic superconductivity. Crommie plans to test that prediction with Mo's help at the ALS.

"Part of the beauty of this topic is that all the complex interactions within a QSL somehow combine to form a simple ghost particle that just bounces around inside the crystal," he said. "Seeing this behavior was pretty surprising, especially since we weren't even looking for it."

Research Report: "Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy"


Related Links
Advanced Light Source at Berkeley Labs
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How ions get their electrons back
Vienna, Austria (SPX) Aug 20, 2021
Very unusual atomic states are produced at TU Wien: Ions are created by removing not just one but 20 to 40 electrons from each atom. These "highly charged ions" play an important role in current research. For a long time, people have been investigating what happens when such highly charged ions hit solid materials. This is important for many areas of application in materials research. Therefore it is crucial to know how the charge state of the ions change when they penetrate a material - but this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Space pens, pencils, and how NASA takes notes in space

Making space-based research more affordable-with a little help from the Girl Scouts

Mystery investor orders life support system for private space station

Collins Aerospace to provide an Earth-like atmosphere for future travelers heading into orbit

TIME AND SPACE
Fire ravages Esrange Space Centre in northern Sweden

NASA Technologies slated for testing on Blue Origin's New Shepard

AFRL extends capability for testing solid rocket motors with new equipment

Blue Origin launches experiments, artwork from Texas

TIME AND SPACE
NASA's Perseverance plans next sample attempt

Mars helicopter sees potential rover road ahead

Mars mission to pause for about 50 days

China's rover travels over 1 km on Mars

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
Space science project funding available for UK space projects

Maxar awarded contract to build SXM-10 satellite for SiriusXM

OneWeb confirms another successful launch, accelerating business momentum

Russia's Soyuz Spacecraft Launches 34 New OneWeb Satellites Into Orbit

TIME AND SPACE
Crews at Russian Cosmodrome assemble spacecraft with VR Glasses

Astroscale's ELSA-d demonstrates repeated magnetic capture

SwRI tests liquid acquisition device aboard Blue Origin's New Shepard rocket

World's first space junk cleaner satellite successfully picks up orbital debris

TIME AND SPACE
New class of habitable exoplanets are 'a big step forward' in the search for life

Cold planets exist throughout our Galaxy, even in the Galactic bulge

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.