.  . 
The Poincare Dodecahedral Space Model Gains Support To Explain The Shape Of Space
Paris, France (SPX) Feb 13, 2008 The last fifteen years have shown considerable growth in attempt to determine the global shape of the universe, i.e. not only the curvature of space but also its topology. The concordance cosmological model which now prevails describes the universe as a flat (zerocurvature) infinite space in eternal, accelerated expansion. However, the data delivered between 2003 and 2006 by the NASA satellite WMAP, which produced a fullsky, high resolution map of the Cosmic Microwave Background Radiation (CMB), yield a very poor fit to the concordance model at large angular scales. They rather tend to favor a finite, positively curved space, and provide hints about a multiplyconnected topology. The CMB is the relics of the radiation emitted soon after the Big Bang. It is observed on the socalled last scattering surface (LSS), a sphere of radius about 50 billion lightyears around us. The tiny temperature fluctuations observed on the LSS may be decomposed into a sum of spherical harmonics, much like the sound produced by a music instrument may be decomposed into ordinary harmonics. The relative amplitudes of each spherical harmonics determine the power spectrum, which is a signature of the geometry of space and of the physical conditions which prevailed at the time of CMB emission. Now, cosmic topology predicts that a space which is smaller than the LSS cannot contain vibrational modes larger than the space itself. This should lead to a cutoff of power in statistics representing these fluctuations, above which power should drop to zero. The predicted cutoff in large scale power has precisely been observed by the 20032006 WMAP allsky survey. Motivated by indications that the Universe may have positive curvature, and calculating largeangle vibrational harmonics to simulate the power spectrum, some authors of the present study had already argued in October 2003 that the multiplyconnected Poincare dodecahedral space (PDS) topology was favoured by the WMAP data relative to an infinite, simply connected flat space. The PDS model has since been studied in more mathematical details by several teams all around the world. In the most recent study, Luminet and coworkers calculated 1,7 billion vibrational modes of PDS to simulate more accurately the power spectrum, from large to small angular scales. They found that the maximal repression of the quadrupole signal, as found in the data, requires an optimal total density of Otot = 1.018. Their predicted PDS power spectrum then remarkably agrees with the observed one.
Circle signature As a definite signature of the underlying topology, the PDS model predicts six pairs of antipodal matched circles with a relative phase of 36degrees. To test this prediction, the team has simulated CMB temperature fluctuations maps in the PDS topology and checked the presence of the expected circlesinthesky. Now the crucial question is : are these pairs of matched circles present in the real WMAP data ? Three different teams (from USA, Germany and Poland) have addressed the problem in the recent years, using various statistical indicators and massive computer calculations. No clear answer presently emerges, because the expected positive correlation signal from matched pairs is spoiled by various cosmological effects, astrophysical foregrounds and instrumental effects that constitute noise. Thus, another international team of cosmologists lead by B. Roukema of Torun University in Poland (formerly at ParisMeudon Observatory), has reanalyzed the WMAP data with new statistical tools. They have shown that crosscorrelations of temperature fluctuations on multiple copies of the LSS imply a highly crosscorrelated PDS symmetry with the correct phase of 36degrees for the matched circles. By determining the position of such circles, they were even able to fix the space orientation of the fundamental dodecahedron relative to the CMB frame.
Conclusion
Community
Cluster Result Impacts Future Missions Paris, France (ESA) Jan 29, 2008 Magnetic reconnection is a universal process able to drive explosive phenomena such as solar flares. At the heart of this process is a small zone called the electron diffusion region, where reconnection is thought to be triggered. 

The content herein, unless otherwise known to be public domain, are Copyright 19952007  SpaceDaily.AFP and UPI Wire Stories are copyright Agence FrancePresse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement 