. 24/7 Space News .
STELLAR CHEMISTRY
Team of astronomers finds widest separation of brown dwarf pair to date
by Staff Writers
Tempe AZ (SPX) Jan 14, 2022

WISE (left) and the Dark Energy Survey Collaboration (DES) (right) images of CWISE J0146-0508AB. In the lower-resolution WISE image, the pair are blended into a single point-source, while two distinct entities are visible in the higher-resolution DES image. The reddish hue of both objects in the DES image shows that they emit much of their light in the infrared, a trait typical of brown dwarfs. Credit: WISE/DES/Softich et al

A team of astronomers, led by Arizona State University undergraduate student Emma Softich, has discovered a rare pair of brown dwarfs that has the widest separation of any brown dwarf binary system found to date.

Brown dwarfs are celestial objects that are smaller than a normal star and without sufficient mass to sustain nuclear fusion, but that are hot enough to radiate energy. Many brown dwarfs have been discovered with data from NASA's Wide-field Infrared Survey Explorer (WISE) via the Backyard Worlds: Planet 9 citizen science project, which solicits help from the public to search the WISE image data bank to find brown dwarfs and low-mass stars, some of the sun's nearest neighbors.

For this study, the team of astronomers inspected images of Backyard Worlds discoveries, where companion brown dwarfs may have been overlooked. In so doing, they discovered a rare brown dwarf binary system (CWISE J014611.20 050850.0AB).

"Wide, low-mass systems like CWISE J014611.20-050850.0AB are usually disrupted early on in their lifetimes, so the fact that this one has survived until now is pretty remarkable," said co-author Adam Schneider of the U.S. Naval Observatory, Flagstaff Station and George Mason University.

For this study, lead author Softich, who is an astrophysics student at ASU's School of Earth and Space Exploration, went through about 3,000 brown dwarfs from Backyard Worlds one by one and compared the WISE images to other survey images, looking for evidence of a brown dwarf companion to the original target. The team then used data from the Dark Energy Survey (DES) to confirm that it was indeed a brown dwarf pair.

They then used the Keck Observatory's Near-Infrared Echellette Spectrometer (NIRES) to confirm that the brown dwarfs have spectral types L4 and L8, and that they are at an estimated distance of about 40 parsecs (130.4 lightyears) from Earth, with a projected separation of 129 astronomical units, or 129 times the distance between the sun and the Earth.

This distance makes CWISE J014611.20-050850.0AB the widest brown dwarf pair found to date, with a separation of around 12 billion miles, three times the separation of Pluto from the sun.

"Because of their small size, brown dwarf binary systems are usually very close together," Softich said. "Finding such a widely separated pair is very exciting."

In addition, the gravitational force between a pair of brown dwarfs is lower than for a pair of stars with the same separation, so wide brown dwarf binaries are more likely to be disrupted over time, making this pair of brown dwarfs an exceptional find.

The team hopes this discovery will allow astronomers the chance to study brown dwarf binary systems and to develop models and procedures that will help in recognizing more of them in the future.

"Binary systems are used to calibrate many relations in astronomy, and this newly discovered pair of brown dwarfs will present an important test of brown dwarf formation and evolution models," said co-author Jennifer Patience, who is Softich's adviser at ASU.

Additional authors on this study include Adam Burgasser, Chih-Chun Hsu and Christian Aganze of the University of California San Diego; Evgenya Shkolnik of Arizona State University; Jacqueline Faherty, Dan Caselden and Daniella Bardalez Gagliuffi of the American Museum of Natural History; Aaron M. Meisner of the NSF's National Optical-Infrared Astronomy Research Laboratory; J. Davy Kirkpatrick of IPAC; Marc Kuchner of NASA Goddard; Jonathan Gagne of the University of Montreal; Michael Cushing of the University of Toledo; Sarah Casewell of the University of Leicester; and Nikolaj Andersen, Frank Kiwy and Melina Thevenot of Backyard Worlds: Planet 9.

Research Report: "CWISE J014611.20-050850.0AB: The Widest Separation Field Brown Dwarf Binary."


Related Links
Arizona State University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Researchers Observe Massive CME on Distant, Sun-Like Star
Washington DC (SPX) Jan 14, 2022
EK Draconis illuminates an unimagined picture of how superflares may affect interplanetary space through coronal mass ejections Welcome to the New Year! While Earth celebrated 2022's arrival with displays of fireworks, the greatest "fireworks show" in our solar system often occurs on the Sun. Its atmosphere is a venue for dynamic sunspots, solar flares, and dramatic encores of released magnetic tension casting plasma particles into the cosmos via coronal mass ejections (CME). We've seen and studi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Solar Sail Mission to Chase Tiny Asteroid After Artemis I Launch

NASA Offers $1 Million for Innovative Systems to Feed Tomorrow's Astronauts

Russian cosmonauts conduct EVA to complete Nauka Lab Module integration to ISS

Russia's only female cosmonaut to travel to space in September

STELLAR CHEMISTRY
NASA prepares final rocket tests for first Artemis moon mission launch

China's new generation carrier rocket Long March-8 ready for launch

Ariane 6 upper stage readies for tests at Europe's Spaceport

Virgin Orbit mission success brings UK satellite launch one step closer

STELLAR CHEMISTRY
Sols 3362-3363: Sedimentologist's Delight

Consistent asteroid showers rock previous thinking on Mars craters

Ejecting Mars' Pebbles

Dust storm grounded Mars helicopter, but it's ready to fly again

STELLAR CHEMISTRY
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

STELLAR CHEMISTRY
OneWeb and Hughes to bring orbital broadband service to India

AGIS signs Kleos' data evaluation contract

GalaxySpace to establish space-based network

Palomar survey instrument analyzes impact of Starlink satellites

STELLAR CHEMISTRY
Future trillion dollar 'space economy' threatened by debris, WVU researcher says

China satellite in close encounter with Russian debris: state media

Lion will roam above the planet - KP Labs to release their "king of orbit"

New AI navigation prevents crashes

STELLAR CHEMISTRY
TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

SETI's plan for a sky-monitoring telescope on the moon

New insights into seasons on a planet outside our solar system

Newly-Found Planets On The Edge Of Destruction

STELLAR CHEMISTRY
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.