. 24/7 Space News .
SOLAR SCIENCE
Switchbacks and spikes: Parker Solar Probe data consistent with 20-year-old theory
by James Lynch for UM News
Ann Arbor MI (SPX) Apr 30, 2020

Illustration of global magnetic field circulation enabled by interchange reconnection. In this scenario an open magnetic field line is (A) dragged against a large coronal loop, by global circulation in the corona, (B) undergoes interchange reconnection, and (C) effectively jumps the approximate width of the originally closed loop, launching an S-shaped switchback in the magnetic field into the corona. Graphic by Justin Kasper and Levi Hutmacher/University of Michigan Engineering.

Continued analysis of Parker Solar Probe data is starting to create a clearer picture of the sun's magnetic activity, which may bolster our ability to predict dangerous solar events.

And the more information that comes in, the more it all fits with theories posited at the turn of the millennium by researchers at the University of Michigan. Justin Kasper, professor of climate and space sciences and engineering at U-M, said those current and former U-M researchers, led by Lennard Fisk, the Thomas M. Donahue Distinguished University Professor of Space Science, pieced together an intricate picture of the sun's workings long before Parker launched in August 2018.

"This isn't like having the data and coming up with a theory that happens to line up with it," said Kasper, who serves as principal investigator for Parker's Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite. "This is possibly observational closure emerging on a theory that was put out two decades ago."

The new data is summarized and compared with the previous work in Astrophysical Journal Letters.

Sensors aboard the spacecraft have produced data suggesting:

+ The sun's atmosphere, composed of plasma and magnetic fields, moves in a general global circulation pattern. Parker Solar Probe can observe a small section at any given time.

+ Close to the sun, solar wind-the outward stream of charged particles from the surface-is embedded with abrupt changes in magnetic field direction, called switchbacks, along which the solar wind flows at an accelerated speed.

+ The global coronal magnetic field slides over the surface of the sun via a process called interchange reconnection-when closed loops of magnetic field sprouting from the sun's surface explosively realign with open magnetic field lines that extend out into the solar system.

Each of these items reveals fundamental processes occurring at the sun and this understanding has practical applications here on Earth.

"What this gives us is insight into how the sun produces slow and fast solar winds," said Kasper. "Defining that mechanism is key to predicting when a transition from slow to fast solar wind is going to strike Earth and create a geomagnetic storm."

Those conclusions agree with predictions put forth in 1999 and 2001 research papers from Fisk and U-M colleagues. One of those, Thomas Zurbuchen, is currently associate director of NASA's Science Mission Directorate.

"It's amazing to see Parker Solar Probe provide a missing puzzle piece to support and expand ideas we first thought about with spacecraft data from almost 25 years ago," said Zurbuchen. "As Parker Solar Probe flies closer to the sun, I can't wait to see what answers-and questions-we'll learn next."

A long time coming

"Badly." That's how Fisk, co-author of the new APJ Letters paper, remembers his earlier work being accepted by solar physicists. It offered possible explanations for how several different solar phenomena interact, but the data to verify such things was limited by technology. Effects of the near-sun phenomena were only observed in the more distant heliosphere. The heliosphere is the region of space, including our solar system, that the solar wind influences.

In those earlier publications, Fisk theorized that, in different areas of the corona, so-called open magnetic lines that stretch from the surface of the sun out into space should circulate in a closed pattern, with motions both in the direction of and opposite to the sun's rotation. And he also posited that the individual interchange reconnection jumps would combine to permit overall motions of the corona over the surface of the sun.

Fisk found his first clues about the strange magnetic activity in the sun's heliosphere after combing through data collected during the ESA/NASA Ulysses mission. Launched in 1990, Ulysses was the first spacecraft to pass over the sun's poles. There, the spacecraft recorded particle radiation that originated at lower solar latitudes-a finding that suggested the magnetic field observed by Ulysses had to be in motion in the solar corona.

The team that conducted this research included Zurbuchen and Nathan Schwadron, now a professor of physics and astronomy at the University of New Hampshire.

Since publication of those earlier papers, Fisk has moved on to other research projects. But his office neighbor just happened to be Kasper. And when Parker Solar Probe's first data came rolling in last year, Fisk could see how it all fit together.

"Once you get confirmation of this basic process, all of a sudden, there are all of these implications for how the sun works, how its magnetic field works and how the solar wind is accelerated," Fisk said. "It gives you the opportunity to solve many other solar and stellar physics problems because now you have the basic mechanisms."

As Parker Solar Probe continues to move closer to the sun, the mission will provide ample opportunity to test and validate predictions by the theory.

Parker Solar Probe is part of the NASA Heliophysics Living With a Star program, created to explore aspects of the sun-Earth system that directly affect life and society. The program is managed by the agency's Goddard Space Flight Center in Greenbelt, Maryland, for NASA's Science Mission Directorate in Washington. Johns Hopkins APL designed, built and operates the spacecraft.

Research Report: "Global Circulation of the Open Magnetic Flux of the Sun"


Related Links
Parker Solar Probe
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
SwRI to build Space Weather Follow-On L1 for NOAA
Greenbelt MD (SPX) Apr 16, 2020
On behalf of the National Oceanic and Atmospheric Administration (NOAA), NASA has awarded the Space Weather Follow-On Lagrange 1 (SWFO-L1) Magnetometer contract to Southwest Research Institute (SwRI) based in San Antonio, Texas. This is a cost-plus, fixed-fee contract with a total value of $12,862,664. The period of performance is 75 months. SwRI will design, analyze, develop, fabricate, integrate, test, calibrate and evaluate the magnetometer instrument that consists of two three-axis magne ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
180 day commercial Soyuz mission to ISS possible in 2022

Russian cargo capsule docks with ISS

CASIS welcomes new NASA ISS National Lab program executive

Russian 'Victory Rocket' cargo flight docks at ISS

SOLAR SCIENCE
US Military not sure if Iran's launch of 'military' satellite was successful

Solar One: A proposal for the first manned interstellar spaceship

Permanently open call for commercial space transportation services

NASA Test Directors eagerly await Artemis launch

SOLAR SCIENCE
Promising signs for Perseverance rover in its quest for past Martian life

Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

SOLAR SCIENCE
China builds Asia's largest steerable radio telescope for Mars mission

China recollects first satellite stories after entering space for 50 years

China's first Mars exploration mission named Tianwen-1

Parachutes guide China's rocket debris safely to earth

SOLAR SCIENCE
Momentus selected as launch provider for Swarm

Elon Musk's SpaceX launches 60 Starlink satellites from Florida

SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

SOLAR SCIENCE
Sensors woven into a shirt can monitor vital signs

Coding contest from NASA and Texas Instruments allows students to compete virtually to win out-of-this-world prizes

New Army tech may turn low-cost printers into high-tech producers

UAV Navigation integrates Sagetech Avionics' transponders for sense and avoidance

SOLAR SCIENCE
Yale's EXPRES looks to the skies of a scorching, distant planet

Researchers use 'hot Jupiter' data to mine exoplanet chemistry

Scientists find microbes eating ethane spewing from deep-sea vents

Hubble observes aftermath of massive collision

SOLAR SCIENCE
Jupiter probe JUICE: Final integration in full swing

The birth of a "Snowman" at the edge of the Solar System

New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.