. 24/7 Space News .
IRON AND ICE
SwRI-led team finds meteoric evidence for a previously unknown asteroid
by Staff Writers
San Antonio TX (SPX) Dec 22, 2020

file illustration only

A Southwest Research Institute-led team of scientists has identified a potentially new meteorite parent asteroid by studying a small shard of a meteorite that arrived on Earth a dozen years ago. The composition of a piece of the meteorite Almahata Sitta (AhS) indicates that its parent body was an asteroid roughly the size of Ceres, the largest object in the main asteroid belt, and formed in the presence of water under intermediate temperatures and pressures.

"Carbonaceous chondrite (CC) meteorites record the geological activity during the earliest stages of the Solar System and provide insight into their parent bodies' histories," said SwRI Staff Scientist Dr. Vicky Hamilton, first author of a paper published in Nature Astronomy outlining this research.

"Some of these meteorites are dominated by minerals providing evidence for exposure to water at low temperatures and pressures. The composition of other meteorites points to heating in the absence of water. Evidence for metamorphism in the presence of water at intermediate conditions has been virtually absent, until now."

Asteroids - and the meteors and meteorites that sometimes come from them - are leftovers from the formation of our Solar System 4.6 billion years ago. Most reside in the main asteroid belt between the orbits of Mars and Jupiter, but collisions and other events have broken them up and ejected remnants into the inner Solar System.

In 2008, a 9-ton, 13-foot diameter asteroid entered Earth's atmosphere, exploding into some 600 meteorites over the Sudan. This marked the first time scientists predicted an asteroid impact prior to entry and allowed recovery of 23 pounds of samples.

"We were allocated a 50-milligram sample of AhS to study," Hamilton said. "We mounted and polished the tiny shard and used an infrared microscope to examine its composition. Spectral analysis identified a range of hydrated minerals, in particular amphibole, which points to intermediate temperatures and pressures and a prolonged period of aqueous alteration on a parent asteroid at least 400, and up to 1,100, miles in diameter."

Amphiboles are rare in CC meteorites, having only been identified previously as a trace component in the Allende meteorite. "AhS is a serendipitous source of information about early Solar System materials that are not represented by CC meteorites in our collections," Hamilton said.

Orbital spectroscopy of asteroids Ryugu and Bennu visited by Japan's Hayabusa2 and NASA's OSIRIS-REx spacecraft this year is consistent with aqueously altered CC meteorites and suggests that both asteroids differ from most known meteorites in terms of their hydration state and evidence for large-scale, low-temperature hydrothermal processes. These missions have collected samples from the surfaces of the asteroids for return to Earth.

"If the compositions of the Hayabusa2 and OSIRIS-REx samples differ from what we have in our collections of meteorites, it could mean that their physical properties cause them to fail to survive the processes of ejection, transit and entry through Earth's atmosphere, at least in their original geologic context," said Hamilton, who also serves on the OSIRIS-REx science team. "However, we think that there are more carbonaceous chondrite materials in the Solar System than are represented by our collections of meteorites."

Research paper


Related Links
Southwest Research Institute
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Knowledge of asteroid composition to help avert collisions
Helsinki, Finland (SPX) Dec 29, 2020
The European Space Agency ESA and NASA are working together to determine how the Earth might be protected against the threat posed by asteroids by altering their trajectory. VTT is taking part in the project by determining the mineral composition of the asteroids. This is happening for the first time with a nanosatellite mounted hyperspectral camera. The joint ESA and NASA mission will test deflecting asteroids using a kinetic impactor - a probe that is steered to collide with an asteroid. The imp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Rice seeds carried to the moon and back sprout

Marsquakes, water on other planets, asteroid hunting highlight 2020 in space

China to launch core module of space station in first half of 2021

US may buy seat on Russia's Soyuz for astronaut's flight to ISS in Spring 2021,

IRON AND ICE
SDA awards contract to SpaceX

Launch of Long March 4C closes out China 2020 space plan

Russia plans more Proton-M launches in 2021

mu Space to push Thai space industry, planning to build its first spaceship in 2021

IRON AND ICE
NASA video shows Perseverance rover's planned 'terror' landing on Mars

Fluvial Mapping of Mars

A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

How to get people from Earth to Mars and safely back again

IRON AND ICE
China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

Mission accomplished, now on to the next: China Daily editorial

IRON AND ICE
Record Year for FAA Commercial Space Activity

Voyager Space Holdings to buy all of Nanoracks

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

IRON AND ICE
Scientists and philosopher team up, propose a new way to categorize minerals

New radiation vest technology protects astronauts, doctors

Order and disorder in crystalline ice explained

Spontaneous robot dances highlight a new kind of order in active matter

IRON AND ICE
Discovery boosts theory that life on Earth arose from RNA-DNA mix

Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

IRON AND ICE
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.