. 24/7 Space News .
ENERGY TECH
Spontaneous formation of nanoscale hollow structures could boost battery storage
by Staff Writers
Atlanta GA (SPX) Jun 10, 2020

Small batteries were used to study the spontaneous formation of nanoscale hollow structures in the laboratory of Matthew McDowell at Georgia Tech.

An unexpected property of nanometer-scale antimony crystals - the spontaneous formation of hollow structures - could help give the next generation of lithium ion batteries higher energy density without reducing battery lifetime. The reversibly hollowing structures could allow lithium ion batteries to hold more energy and therefore provide more power between charges.

Flow of lithium ions into and out of alloy battery anodes has long been a limiting factor in how much energy batteries could hold using conventional materials. Too much ion flow causes anode materials to swell and then shrink during charge-discharge cycles, causing mechanical degradation that shortens battery life.

To address that issue, researchers have previously developed hollow "yolk-shell" nanoparticles that accommodate the volume change caused by ion flow, but fabricating them has been complex and costly.

Now, a research team has discovered that particles a thousand times smaller than the width of a human hair spontaneously form hollow structures during the charge-discharge cycle without changing size, allowing more ion flow without damaging the anodes. The research was reported June 1 in the journal Nature Nanotechnology.

"Intentionally engineering hollow nanomaterials has been done for a while now, and it is a promising approach for improving the lifetime and stability of batteries with high energy density," said Matthew McDowell, assistant professor in the George W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering at the Georgia Institute of Technology.

"The problem has been that directly synthesizing these hollow nanostructures at the large scales needed for commercial applications is challenging and expensive. Our discovery could offer an easier, streamlined process that could lead to improved performance in a way that is similar to the intentionally engineered hollow structures."

The researchers made their discovery using a high-resolution electron microscope that allowed them to directly visualize battery reactions as they occur at the nanoscale. "This is a tricky type of experiment, but if you are patient and do the experiments right, you can learn really important things about how the materials behave in batteries," McDowell said.

The team, which included researchers from ETH Zurich and Oak Ridge National Laboratory, also used modeling to create a theoretical framework for understanding why the nanoparticles spontaneously hollow - instead of shrinking - during removal of lithium from the battery.

The ability to form and reversibly fill hollow particles during battery cycling occurs only in oxide-coated antimony nanocrystals that are less than approximately 30 nanometers in diameter. The research team found that the behavior arises from a resilient native oxide layer that allows for initial expansion during lithiation - flow of ions into the anode - but mechanically prevents shrinkage as antimony forms voids during the removal of ions, a process known as delithiation.

The finding was a bit of a surprise because earlier work on related materials had been performed on larger particles, which expand and shrink instead of forming hollow structures. "When we first observed the distinctive hollowing behavior, it was very exciting and we immediately knew this could have important implications for battery performance," McDowell said.

Antimony is relatively expensive and not currently used in commercial battery electrodes. But McDowell believes the spontaneous hollowing may also occur in less costly related materials such as tin. Next steps would include testing other materials and mapping a pathway to commercial scale-up.

"It would be interesting to test other materials to see if they transform according to a similar hollowing mechanism," he said. "This could expand the range of materials available for use in batteries. The small test batteries we fabricated showed promising charge-discharge performance, so we would like to evaluate the materials in larger batteries."

Though they may be costly, the self-hollowing antimony nanocrystals have another interesting property: they could also be used in sodium-ion and potassium-ion batteries, emerging systems for which much more research must be done.

"This work advances our understanding of how this type of material evolves inside batteries," McDowell said. "This information will be critical for implementing the material or related materials in the next generation of lithium-ion batteries, which will be able to store more energy and be just as durable as the batteries we have today."

Research paper


Related Links
Georgia Institute Of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Researchers advance fuel cell technology
Pullman WA (SPX) Jun 10, 2020
Washington State University researchers have made a key advance in solid oxide fuel cells (SOFCs) that could make the highly energy-efficient and low-polluting technology a more viable alternative to gasoline combustion engines for powering cars. Led by PhD graduate Qusay Bkour and Professor Su Ha in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering, the researchers have developed a unique and inexpensive nanoparticle catalyst that allows the fuel cell to convert logisti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Airbnb sees 'bounce' in travel, aims to promote local tourism

ARISS established dedicated US Organization to support amateur ISS communications

From space, Russian cosmonauts fight chess grandmaster to a draw

CES global gadget fest on track despite pandemic

ENERGY TECH
New Zealand rocket launch postponed due to wind gusts

Agency seeks hypersonic missile defense system proposals

China plans to develop new solid-fueled carrier rocket

ULA on track to launch new Vulcan rocket in early 2021

ENERGY TECH
Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

Martian moon orbit hints at ancient ring

ENERGY TECH
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

ENERGY TECH
York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

Momentus and OrbAstro announce service agreement for 3U in-orbit demonstration

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

ENERGY TECH
A breakthrough in developing multi-watt terahertz lasers

Freshly printed magnets using Metal 3D laser printing

Lab makes 4D printing more practical

Could we run out of sand? Scientists adjust how grains are measured

ENERGY TECH
Presence of airborne dust could signify increased habitability of distant planets

Ancient asteroid impacts created the ingredients of life on Earth and Mars

Mirror image of Earth and Sun

New experiments show complex astrochemistry on thin ice covering dust grains

ENERGY TECH
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.