. 24/7 Space News .
STELLAR CHEMISTRY
Satellite galaxies of the Milky Way help test dark matter theory
by Staff Writers
Riverside CA (SPX) Apr 16, 2020

File illustration of 2 colliding satellite galaxies orbiting the Milkyway

A research team led by physicists at the University of California, Riverside, reports tiny satellite galaxies of the Milky Way can be used to test fundamental properties of "dark matter" - nonluminous material thought to constitute 85% of matter in the universe.

Using sophisticated simulations, the researchers show a theory called self-interacting dark matter, or SIDM, can compellingly explain diverse dark matter distributions in Draco and Fornax, two of the Milky Way's more than 50 discovered satellite galaxies.

The prevailing dark matter theory, called Cold Dark Matter, or CDM, explains much of the universe, including how structures emerge in it. But a long-standing challenge for CDM has been to explain the diverse dark matter distributions in galaxies.

The researchers, led by UC Riverside's Hai-Bo Yu and Laura V. Sales, studied the evolution of SIDM "subhalos" in the Milky Way "tidal field" - the gradient in the gravitational field of the Milky Way that a satellite galaxy feels in the form of a tidal force. Subhalos are dark matter clumps that host the satellite galaxies.

"We found SIDM can produce diverse dark matter distributions in the halos of Draco and Fornax, in agreement with observations," said Yu, an associate professor of physics and astronomy and a theoretical physicist with expertise in particle properties of dark matter. "In SIDM, the interaction between the subhalos and the Milky Way's tides leads to more diverse dark matter distributions in the inner regions of subhalos, compared to their CDM counterparts."

Draco and Fornax have opposite extremes in their inner dark matter contents. Draco has the highest dark matter density among the nine bright Milky Way satellite galaxies; Fornax has the lowest. Using advanced astronomical measurements, astrophysicists recently reconstructed their orbital trajectories in the Milky Way's tidal field.

"Our challenge was to understand the origin of Draco and Fornax's diverse dark matter distributions in light of these newly measured orbital trajectories," Yu said. "We found SIDM can provide an explanation after taking into both tidal effects and dark matter self-interactions."

Dark matter's nature remains largely unknown. Unlike normal matter, it does not absorb, reflect, or emit light, making it difficult to detect. Identifying the nature of dark matter is a central task in particle physics and astrophysics.

In CDM, dark matter particles are assumed to be collisionless, and every galaxy sits within a dark matter halo that forms the gravitational scaffolding holding it together. In SIDM, dark matter is proposed to self-interact through a new dark force. Dark matter particles are assumed to strongly collide with one another in the inner halo, close to the galaxy's center - a process called dark matter self-interaction.

"Our work shows satellite galaxies of the Milky Way may provide important tests of different dark matter theories," said Sales, an assistant professor of physics and astronomy and an astrophysicist with expertise in numerical simulations of galaxy formation. "We show the interplay between dark matter self-interactions and tidal interactions can produce novel signatures in SIDM that are not expected in the prevailing CDM theory."

In their work, the researchers mainly used numerical simulations, called "N-body simulations," and obtained valuable intuition through analytical modeling before running their simulations.

"Our simulations reveal novel dynamics when an SIDM subhalo evolves in the tidal field," said Omid Sameie, a former UCR graduate student who worked with Yu and Sales and is now a postdoctoral researcher at the University of Texas at Austin working on numerical simulations of galaxy formation. "It was thought observations of Draco were inconsistent with SIDM predictions. But we found a subhalo in SIDM can produce a high dark matter density to explain Draco."

Sales explained SIDM predicts a unique phenomenon named "core collapse." In certain circumstances, the inner part of the halo collapses under the influence of gravity and produces a high density. This is contrary to the usual expectation that dark matter self-interactions lead to a low-density halo. Sales said the team's simulations identify conditions for the core collapse to occur in subhalos.

"To explain Draco's high dark matter density, its initial halo concentration needs to be high," she said. "More dark matter mass needs to be distributed in the inner halo. While this is true for both CDM and SIDM, for SIDM the core-collapse phenomenon can only occur if the concentration is high so that the collapse timescale is less than the age of the universe. On the other hand, Fornax has a low-concentrated subhalo, and hence its density remains low."

The researchers stressed their current work mainly focuses on SIDM and does not make a critical assessment on how well CDM can explain both Draco and Fornax.

After the team used numerical simulations to properly take into account the dynamical interplay between dark matter self-interactions and tidal interactions, the researchers observed a striking result.

"The central dark matter of an SIDM subhalo could be increasing, contrary to usual expectations," Sameie said. "Importantly, our simulations identify conditions for this phenomenon to occur in SIDM, and we show it can explain observations of Draco."

The research team plans to extend the study to other satellite galaxies, including ultrafaint galaxies.

Study results appear in Physical Review Letters.

Research paper


Related Links
University Of California - Riverside
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Looking for dark matter
Washington DC (SPX) Apr 10, 2020
Dark matter, which cannot be physically observed with ordinary instruments, is thought to account for well over half the matter in the Universe, but its properties are still mysterious. One commonly held theory states that it exists as 'clumps' of extremely light particles. When the earth passes through such a clump, the fundamental properties of matter are altered in ways that can be detected if instruments are sensitive enough. Physicists Rees McNally and Tanya Zelevinsky from Columbia Universit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA awards propellants and life support services contract

NASA advances food-in-space technology

Insects, seaweed and lab-grown meat could be the foods of the future

ISS Nat Lab issues RFPs to leverage external facility for materials/device testing

STELLAR CHEMISTRY
Russia space chief spars with Elon Musk over launch pricing

RocketShip delivers Delta IV Heavy boosters at VAFB

Rocket Lab completes electron mid-air recovery test

Russia will cut space launch prices by 30 percent in response to SpaceX predatory pricing

STELLAR CHEMISTRY
NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

Mars Helicopter attached to Perseverance Mars rover

Choosing rocks on Mars to bring to Earth

NASA's Perseverance Mars rover gets its wheels and air brakes

STELLAR CHEMISTRY
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

STELLAR CHEMISTRY
NewSpace Philosophies: Who, How, What?

Hong Kong Aerospace Technology Group prepares to launch their first satellite "Golden Bauhinia"

OneWeb goes bankrupt

Trump issues Executive Order supporting Space Resources utlization

STELLAR CHEMISTRY
Now metal surfaces can be instant bacteria killers

Spacecraft is designed to survive fire, surfs its own wave

Swinging for the Space Fence

General Atomics opens new spacecraft development and test facility in Colorado

STELLAR CHEMISTRY
Origin of the first known interstellar object 'Oumuamua

NASA selects early-stage technology concepts for new, continued study

Sellafield research uncovers microbial life in fuel ponds

Salmon parasite is world's first non-oxygen breathing animal

STELLAR CHEMISTRY
Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.