. 24/7 Space News .
ICE WORLD
Runaway West Antarctic ice retreat can be slowed by climate-driven ocean temps
by Staff Writers
Cambridge UK (SPX) Jan 17, 2023

"This study reinforces the urgent requirement to clarify how rapidly the most vulnerable regions of the West Antarctic Ice Sheet such as Thwaites Glacier will retreat, with global consequences for sea level rise," said Bingham. "New data that we are currently acquiring from a traverse across Thwaites Glacier this January will directly address this goal."

An international team of researchers has combined satellite imagery and climate and ocean records to obtain the most detailed understanding yet of how the West Antarctic Ice Sheet - which contains enough ice to raise global sea level by 3.3 metres - is responding to climate change.

The researchers, from the University of Cambridge, the University of Edinburgh and the University of Washington, found that the pace and extent of ice destabilisation along West Antarctica's coast varies according to differences in regional climate.

Their results, reported in the journal Nature Communications, show that while the West Antarctic Ice Sheet continues to retreat, the pace of retreat slowed across a vulnerable region of the coastline between 2003 and 2015. This slowdown was driven by changes in surrounding ocean temperature, which were in turn caused by variations in offshore wind conditions.

The marine-based West Antarctic Ice Sheet, home to the vast and unstable Pine Island and Thwaites glaciers, sits atop a landmass lying up to 2,500 metres below the surface of the ocean. Since the early 1990s, scientists have observed an abrupt acceleration in ice melting, retreat and speed in this area, which is attributed in part to human-induced climate change over the past century.

Other scientists have previously indicated that this type of response across a low-lying landmass could be the onset of an irreversible, ice-sheet-wide collapse called a marine ice sheet instability, which would continue independently of any further climatic influence.

"The idea that once a marine-based ice sheet passes a certain tipping point it will cause a runaway response has been widely reported," said Dr Frazer Christie from Cambridge's Scott Polar Research Institute, the paper's lead author. "Despite this, questions remain about the extent to which ongoing changes in climate still regulate ice losses along the entire West Antarctic coastline."

Using observations collected by an array of satellites, Christie and colleagues found pronounced regional variations in how the West Antarctic Ice Sheet has evolved since 2003 due to climate change, with the pace of retreat in the Amundsen Sea Sector having slowed significantly in comparison to the neighbouring and much accelerated Bellingshausen Sea Sector.

By analysing climate and ocean records, the researchers linked these regional differences to changes in the strength and direction of offshore surface winds.

In this part of Antarctica, the prevailing winds come from the west. When these westerly winds get stronger, they stir up warmer, saltier water from deep in the ocean, which reaches the Antarctic coastline and increases the rate of ice melt.

"But between 2003 and 2015 offshore of the Amundsen Sea Sector, the intensity of the prevailing westerly winds reduced," said Christie. "This meant that the deeper, warmer water couldn't intrude, and we saw a notable change in corresponding glacier behaviour along the region: a clear reduction in the rate of melt and ice-mass loss."

So what caused these weaker winds and, by implication, reduced ice melt? The researchers found the primary cause was an unusual deepening of the Amundsen Sea Low pressure system, which led to less warm water intrusion. This system is the key atmospheric circulation pattern in the region, and its pressure centre location - near which changes in offshore wind strength are greatest - typically sits offshore of its namesake coast for most of the year.

Farther afield from this pressure centre, the researchers found that the accelerated response of the glaciers flowing from the Bellingshausen Sea Sector can be explained by relatively more unaltered winds, enabling more persistent ocean-driven melt by comparison.

Ultimately, the study illustrates the complexity of the competing ice, ocean and atmosphere interactions driving short-term changes across West Antarctica, and raises important questions about how quickly the icy continent will evolve in a warming world.

"Ocean and atmospheric forcing mechanisms still really, really matter in West Antarctica," said co-author Professor Eric Steig from the University of Washington in Seattle. "That means that ice-sheet collapse is not inevitable. It depends on how climate changes over the next few decades, which we could influence in a positive way by reducing greenhouse gas emissions."

The researchers stress that further work is needed to examine how important such mechanisms will be in the future amid a background of increasing marine ice sheet instability. Co-author Professor Robert Bingham from the University of Edinburgh is now working directly on Thwaites Glacier to understand how it is being affected by climate change.

"This study reinforces the urgent requirement to clarify how rapidly the most vulnerable regions of the West Antarctic Ice Sheet such as Thwaites Glacier will retreat, with global consequences for sea level rise," said Bingham. "New data that we are currently acquiring from a traverse across Thwaites Glacier this January will directly address this goal."

"There is an intimate link between the climate and how the ice is behaving," said Christie. "We have the ability to mitigate West Antarctic ice losses - if we curb carbon emissions."

Research Report:Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica


Related Links
University of Cambridge
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Runaway W. Antarctic ice sheet collapse not 'inevitable': study
Paris (AFP) Jan 16, 2023
The runaway collapse of the West Antarctic Ice Sheet - which would trigger catastrophic sea level rise - is not "inevitable", scientists said Monday following research that tracked the region's recent response to climate change. As global temperatures rise, there is mounting concern that warming could trigger so-called tipping points that set off irreversible melting of the world's massive ice sheets and ultimately lift oceans enough to drastically redraw the world map. New research published ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Zero-Covid left in dust as Chinese revellers fuel travel boom

Russia to send capsule to rescue crew from ISS

Russia to send rescue mission to space station

New Soyuz will launch in February to replace leaking ISS spacecraft

ICE WORLD
Arctic Sweden in race for Europe's satellite launches

Rocket Lab sets new date for first Electron launch from U.S. soil

SpaceX capsule lands safely on return from ISS

Private U.S. space company ABL fails to launch from Alaska

ICE WORLD
Martian meteorite contains large diversity of organic compounds

Pausing to take in the view: Sols 3710-3711

In search of a new marker band drill site: Sols 3708-3709

Researchers develop AI method for mapping planets

ICE WORLD
China's first private sector 2023 rocket launch up, up and away

First rocket launch of the New Year leaves Wenchang for space

Space contractors release China's launch plans for 2023

China's space exploration spurred by helping humanity

ICE WORLD
Amazonas Nexus at Cape Canaveral for final processing

SES secures 300M Euro in financing from European Investment Bank

Vast Space becomes the newest member of "Space Beach"

Lynk launches world's 2nd and 3rd commercial Cell-Towers-in-Space

ICE WORLD
Unibap receives order from Thales Alenia Space

Seoul launches ambitious metaverse platform for city services, tourism

Riot at Chinese-funded nickel plant in Indonesia kills two

China launches 3 new satellites

ICE WORLD
NASA's Webb confirms its first exoplanet

Distant star's dimming was likely a 'dusty' companion getting in the way, astronomers say

NASA wants you to help study planets around other stars

NASA scientists study life origins by simulating a cosmic evolution

ICE WORLD
SwRI scientists find evidence for magnetic reconnection between Ganymede and Jupiter

SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.