. 24/7 Space News .
EARLY EARTH
Researchers provide most detailed and complete record yet of Earth's last magnetic reversal
by Staff Writers
Tokyo, Japan (SPX) Oct 22, 2020

stock illustration only

Earth's magnetic fields typically switch every 200 to 300 millennia. Yet, the planet has remained steady for more than twice that now, with the last magnetic reversal occurring about 773,000 years ago. A team of researchers based in Japan now has a better understanding of the geophysical events leading up to the switch and how Earth has responded since then.

They published their results on September 1in the Progress in Earth and Planetary Science, a Springer journal.

Named for the geophysicists who discovered past geomagnetic reversals, the Matuyama-Brunhes geomagnetic reversal is one of the most studied paleomagnetic events, according to paper author Yuki Haneda, project researcher at the National Institute of Polar Research and a postdoctoral research fellow at the National Institute of Advanced Industrial Science and Technology in Japan.

Such reversals swap the magnetic poles of the planet, which could have implications for plant and animal life. Such extrapolation to life, including humans and our ancestors, depends on the duration of the magnetic flip.

Previous studies by other researchers examined samples taken from lava flows, which offer a good snapshot of moments in geophysical history, according to Haneda.

"However, lava sequences cannot provide continuous paleomagnetic records due to the nature of sporadic eruptions," Haneda said.

A series of studies based out of Italy suggested that the magnetic reversal took place within a single century - a blink on the scale of hundreds of thousands of millennia.

"In this study, we collected new samples and conducted paleo- and rock-magnetic analyses of samples from the Chiba composite section, a continuous and expanded marine succession in Central Japan, to reconstruct the full sequence of the Matuyama-Brunhes geomagnetic reversal," Haneda said.

The Chiba composite section is widely considered to contain the most detailed marine sedimentary record of the Matuyama-Brunhes geomagnetic reversal, according to Haneda, and serves as the international standard for lower boundary of the Middle Pleistocene Subseries and Chibanian Stage - when Homo sapiens emerged as a species.

The researchers found that the geomagnetic field became unstable at least 10,000 years prior to the magnetic direction change 773,000 years ago, and the full reversal process took at least 20,000 years.

"Our data is one of the most detailed paleomagnetic record during the Matuyama-Brunhes geomagnetic reversal, offering deep insight into the mechanism of the geomagnetic reversal," Haneda said.

Next, the researchers will investigate how the geomagnetic reversal influenced plankton and plants, using marine microfossil and pollen data found in their samples.

Research paper


Related Links
Research Organization Of Information And Systems
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Beak bone reveals pterosaur like no other
Portsmouth UK (SPX) Oct 19, 2020
A new species of small pterosaur - similar in size to a turkey - has been discovered, which is unlike any other pterosaur seen before due to its long slender toothless beak. The fossilised piece of beak was a surprising find and was initially assumed to be part of the fin spine of a fish, but a team of palaeontologists from the universities of Portsmouth and Bath spotted the unusual texture of the bone - seen only in pterosaurs - and realised it was a piece of beak. Professor David Martill o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
NASA, Department of Energy expand on more than 50 years of collaboration

China passes export law protecting national security, covering tech

Tear in Russian segment of ISS taped with Kapton

Air leak rate at Russia's ISS Zvezda module halves after crack sealed with tape

EARLY EARTH
Soyuz launches from Kourou delayed again due to Covid-19

Draper signs agreement to provide software for Stratolaunch's hypersonic vehicle

Lockheed Martin Adds Three Industry Partners To OpFires Team

DoD establishes hypersonics center at Naval Surface Warfare Center

EARLY EARTH
Perseverance rover bringing 3D-printed metal parts to Mars

This transforming rover can explore the toughest terrain

Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

EARLY EARTH
China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

EARLY EARTH
Space company takes to the skies alongside the NHS

SpaceX launches 14th batch of Starlink satellites

A new decade of European exploration

Consultation on draft insurance and liabilities requirements to implement the Space Industry Act 2018

EARLY EARTH
Does science have a plastic problem

When honey flows faster than water

Scientists discover unusual materials properties at ultrahigh pressure

Western Australia to host space communications station

EARLY EARTH
Microbial diversity below seafloor is as rich as on Earth's surface

No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

EARLY EARTH
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.