24/7 Space News
SOLAR SCIENCE
Researchers discover mysterious source of 'heartbeat-like' radio bursts in a solar fare
An illustration showing EOVSA capturing a pulsating radio burst from a solar flare.
ADVERTISEMENT
     
Researchers discover mysterious source of 'heartbeat-like' radio bursts in a solar fare
by Staff Writers
Newark NJ (SPX) Feb 22, 2023

A solar radio burst with a signal pattern, akin to that of a heartbeat, has been pinpointed in the Sun's atmosphere, according to a new study.

In findings published in the journal Nature Communications, an international team of researchers has reported uncovering the source location of a radio signal coming from within a C-class solar flare more than 5,000 kilometers above the Sun's surface.

Researchers say the study's findings could help scientists better understand the physical processes behind the energy release of solar flares - the solar system's most powerful explosions.

"The discovery is unexpected," said Sijie Yu, the study's corresponding author and astronomer affiliated with NJIT's Center for Solar-Terrestrial Research. "This beating pattern is important for understanding how energy is released and is dissipated in the Sun's atmosphere during these incredibly powerful explosions on the Sun. However, the origin of these repetitive patterns, also called quasi-periodic pulsations, has long been a mystery and a source of debate among solar physicists."

Solar radio bursts are intense bursts of radio waves from the Sun, which are often associated with solar flares and have been known to feature signals with repeating patterns.

The team was able to uncover the source of these pattern signals after studying microwave observations of a solar flare event on July 13, 2017, captured by NJIT's radio telescope called the Expanded Owens Valley Solar Array (EOVSA), which is located at Owens Valley Radio Observatory (OVRO), near Big Pine, Calif.

EOVSA routinely observes the Sun in a wide range of microwave frequencies over 1 to 18 gigahertz (GHz) and is sensitive to radio radiation emitted by high-energy electrons in the Sun's atmosphere, which are energized in solar flares.

From EOVSA's observations of the flare, the team revealed radio bursts featuring a signal pattern repeating every 10-20 seconds, "like a heartbeat", according to study leading author Yuankun Kou, a Ph.D. student at Nanjing University (NJU).

The team identified a strong quasi-periodic pulsation (QPP) signal at the base of the electric current sheet stretching more than 25,000 kilometers through the eruption's core flaring region where opposing magnetic field lines approach each other, break and reconnect, generating intense energy powering the flare.

But surprisingly, Kou says they discovered a second heartbeat in the flare.

"The repeating patterns are not uncommon for solar radio bursts," Kou said. "But interestingly, there is a secondary source we did not expect located along the stretched current sheet that pulses in a similar fashion as the main QPP source."

"The signals likely originate from quasi-repetitive magnetic reconnections at the flare current sheet," added Yu. "This is the first time a quasi-periodic radio signal located at the reconnection region has been detected. This detection can help us to determine which of the two sources caused the other one."

Using the unique microwave imaging capabilities of EOVSA, the team was able to measure the energy spectrum of electrons at the two radio sources in this event.

"EOVSA's spectral imaging gave us new spatially and temporally resolved diagnostics of the flare's nonthermal electrons. ... We found the distribution of high-energy electrons in the main QPP source vary in phase with that of the secondary QPP source in the electronic current sheet," said Bin Chen, associate professor of physics at NJIT and co-author of the paper. "This is a strong indication that the two QPPs sources are closely related."

Continuing their investigation, the team members combined 2.5D numerical modeling of the solar flare, led by the other corresponding author of the paper and professor of astronomy Xin Cheng at NJU, with observations of soft X-ray emission from the solar flares observed by NOAA's GOES satellite, which measures the soft X-ray fluxes from the Sun's atmosphere in two different energy bands.

"We wanted to know how the periodicity occurs in the current sheet", said Cheng. "What is the physical process driving the periodicity and how is it related to the formation of the QPPs?"

The team's analysis showed there are magnetic islands, or bubble-like structures that form in the current sheet, quasi-periodically moving toward the flaring region.

"The appearance of magnetic islands within the long-stretched current sheet plays a key role in tweaking the energy release rate during this eruption," explained Cheng. "Such a quasi-periodic energy release process leads to a repeating production of high-energy electrons, manifesting as QPPs in the microwave and soft X-ray wavelengths."

Ultimately, Yu says the study's findings cast fresh light on an important phenomenon underlying the reconnection process that drives these explosive events.

"We've finally pinpointed the origin of QPPs in solar flares as a result of periodic reconnection in the flare current sheet. ... This study prompts a reexamination of the interpretations of previously reported QPP events and their implications on solar flares."

Research Report:Microwave imaging of quasi-periodic pulsations at flare current sheet

Related Links
Center for Solar-Terrestrial Research at NJIT
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR SCIENCE
China, Europe cooperate in satellite-rocket test
Beijing (XNA) Feb 20, 2023
A China-Europe joint space mission, Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE), has successfully completed a satellite-rocket test, according to the National Space Science Center (NSSC) under the Chinese Academy of Sciences (CAS). A Chinese satellite team from the SMILE mission recently traveled to the European Space Research and Technology Center (ESTEC) of the European Space Agency (ESA) to conduct a prototype satellite-rocket joint test, completing the interface docking, satellit ... read more

ADVERTISEMENT
ADVERTISEMENT
SOLAR SCIENCE
Russia claims Progress leak caused by an "external impact"

Russian rescue mission for three space station astronauts set this week

Russia launches crew-less Soyuz to ISS as replacement

Farming on the Moon

SOLAR SCIENCE
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

SpaceX launches Falcon 9 rocket from Florida, part of Inmarsat program

SpaceX Endeavour's crew arrive at KSC ahead of launch

Flight Crew Arrives at NASA's Kennedy Space Center for Crew-6 Mission

SOLAR SCIENCE
Perseverance set to begin third year on Mars at Jezero Crater

Drilling the Marker Band Again: Sols 3750-3751

Another Busy Day on Mars: Sol 3749

Better tools needed to determine ancient life on Mars

SOLAR SCIENCE
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

SOLAR SCIENCE
New research models concept for data transport using train of satellites

New transmitter design for small satellite constellations improves signal transmission

Vast acquires launcher to accelerate growth

Luxembourg taps into SES's O3b mPOWER for defense and disaster recovery

SOLAR SCIENCE
Low power Ka-band transmitters on Earth observation satellites

Radiation-resistant Ka-band radio for LEO constellation offers speeds Beyond 5G

Redwire partners with Starfish Space for Otter Pup satellite docking mission

Exploring the Valley of the Kings with radar

SOLAR SCIENCE
CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

SOLAR SCIENCE
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.