. 24/7 Space News .
STELLAR CHEMISTRY
Researchers develop material capable of being invisible or reflective in IR spectrum
by Staff Writers
St. Petersburg, Russia (SPX) May 21, 2020

file illustration only

Modern optical devices require constant tuning of their light interaction settings. For that purpose, there exist various mechanical apparatuses that shift lenses, rotate reflectors, and move emitters. An international research team that includes staff members of ITMO University and the University of Exeter have proposed a new metamaterial capable of changing its optical properties without any mechanical input.

This development could result in a significant improvement in the reliability of complex optical devices while making them cheaper to manufacture. The study was featured on the cover of the May 2020 issue of Optica.

The rapid development of physics and materials science in the past decades has brought humanity a wide selection of materials. Now, those who design complex devices are less bound by the limitations of traditional materials such as metals, wood, glass, or minerals.

In this regard, the so-called metamaterials, which are studied at ITMO University among other places, open up incredible opportunities. Thanks to their complex periodical structure, they are relatively independent from the properties of their components. Such structures can be volumetric or flat - in the latter case, they are referred to as metasurfaces.

"Metasurfaces allow us to achieve many interesting effects in the manipulation of light," says Ivan Sinev, a senior researcher at ITMO University's Faculty of Physics and Engineering. "But these metasurfaces have one issue: how they interact with light is decided right in the moment when we design their structure. When creating devices for practical use, we would like to be able to control these properties not only at the outset, but during use, as well."

In their search for materials for adaptive optical devices, researchers from ITMO University, who possess great experience in working with silicon metasurfaces, have joined forces with their colleagues from the University of Exeter in the UK, who have a lot of experience in working with phase-change materials. Among such materials is, for instance, the germanium antimony telluride (GeSbTe) compound, often used in DVDs.

"We've made calculations to see what this new composite material would look like," says Pavel Trofimov, a PhD student at the Faculty of Physics and Engineering. "We have an inclusion of GeSbTe embedded as a thin layer between two layers of silicon. It's a sort of sandwich: first we coat a blank substrate with silicon, then put on a layer of phase-change material, and then some more silicon."

Then, using the methods of e-beam lithography, the scientists converted the layered structure into a metasurface: an array of microscopic disks that was then tested at the laboratory on the subject of its ability to manipulate light. As the researchers expected, the combination of two materials into a complex periodic structure resulted in an important effect: the resulting surface's transparency level could be changed throughout the experiment.

The reason is that a silicon disk in the near-infrared region has two optical resonances, allowing it to strongly reflect IR beams directed onto its surface. The layer of GeSbTe has made it possible to "switch off" one of the two resonances, making the disk nearly transparent to light in the near-infrared region.

Phase-change materials have two states: a crystalline state in which its molecules are positioned in an ordered structure, and an amorphous state. If the layer of GeSbTe at the center of the metamaterial is in the crystalline state, the second resonance will disappear; if it is in the amorphous state, the disk will continue to reflect IR beams.

"To switch between the two metasurface states, we've used a sufficiently powerful pulse laser," explains Pavel Trofimov. "By focusing the laser on our disk, we're able to perform the switch relatively quickly. A short laser pulse heats up the GeSbTe layer nearly to the melting point, after which it quickly cools down and becomes amorphous. If we subject it to a series of short pulses, it cools down more slowly, settling into a crystalline state."

The properties of this new metasurface can be used for various applications. That includes, first and foremost, the creation of lidars - devices that scan spaces by emitting infrared pulses and receiving the reflected beams. The principle of their creation can also serve as the basis in the production of special ultra-thin photographic lenses, such as ones used in phone cameras.


Related Links
ITMO University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
How to manipulate light on the nanoscale over wide frequency ranges
Washington DC (SPX) May 11, 2020
An international team led by researchers from the University of Oviedo and the Centre for Research in Nanomaterials and Nanotechnology (CINN-CSIC), together with scientist from the Basque research centers CIC nanoGUNE, DIPC, Materials Physics Center (CSIC-UPV/EHU), and international collaborators from the Chinese Academy of Sciences, Case Western Reserve University (USA), Austrian Institute of Technology, Paris Materials Centre, and University of Tokyo has discovered an effective method for controlling ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

JAXA HTV-9 spacecraft carries science, technology to ISS

Marshall team prepares for upcoming Commercial Crew Launch

Spacesuit for the ground

STELLAR CHEMISTRY
Atlas 5 launches X-38B for USSF-7 mission

NASA takes preliminary steps to resume SLS Core Stage testing work

Australia Defence Dept signs agreement with Gold Coast space company

Soyuz-7 for Sea Launch to be equipped with new Fregat-SBU Upper Stage

STELLAR CHEMISTRY
Sculpted by nature on Mars

Rover avoids sand traps with 'rear rotator pedaling'

Researchers simulate the core of Mars to investigate its composition and origin

Study suggests terrestrial life unlikely to contaminate Mars

STELLAR CHEMISTRY
China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

STELLAR CHEMISTRY
Intelsat files for bankruptcy, seeks to restructure

ESA Startup competition: next steps

Blackjack focuses on risk reduction flights and simulations

Airbus supplies EU with satellite communications

STELLAR CHEMISTRY
AFRL pushes boundaries in metals printing with new research

Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

New algorithm predicts optimal materials among all possible compounds

Emissions from road construction could be halved using today's technology

STELLAR CHEMISTRY
TRAPPIST-1 planetary orbits not misaligned

Amsterdam researchers observe iron in exoplanetary atmosphere

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

New 'planetary quarantine' report reviewing risks of alien contamination

STELLAR CHEMISTRY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.