. 24/7 Space News .
SOLAR SCIENCE
Research team develops the first physics-based method for predicting large solar flares
by Staff Writers
Nagoya, Japan (SPX) Aug 24, 2020

The process of solar flare production in the physics-based prediction method. A: Electric currents flow along magnetic field lines across the magnetic polarity inversion line on the solar surface, where the magnetic field changes its polarity. B: Magnetic field lines are reconnected and form a double-arc loop that moves away from the surface due magnetohydrodynamic instability. C: The upward motion of the double-arc loop induces further magnetic reconnection. A solar flare begins to burst out from the base points of the reconnected field lines. D: More magnetic reconnections amplify the instability and the solar flare expands.

Solar flares emit sudden, strong bursts of electromagnetic radiation from the Sun's surface and its atmosphere, and eject plasma and energetic particles into inter-planetary space. Since large solar flares can cause severe space weather disturbances affecting Earth, to mitigate their impact their occurrence needs to be predicted. However, as the onset mechanism of solar flares is unclear, most flare prediction methods so far have relied on empirical methods.

The research team led by Professor Kanya Kusano (Director of the Institute for Space-Earth Environmental Research, Nagoya University) recently succeeded in developing the first physics-based model that can accurately predict imminent large solar flares. The work was published in the journal Science on July 31, 2020.

The new method of flare prediction, called the kappa scheme, is based on the theory of "double-arc instability," that is a magnetohydrodynamic (MHD) instability triggered by magnetic reconnection. The researchers assumed that a small-scale reconnection of magnetic field lines can form a double-arc (m-shape) magnetic field and trigger the onset of a solar flare. The kappa -scheme can predict how a small magnetic reconnection triggers a large flare and how a large solar flare can occur.

The predictive model was tested on about 200 active regions during solar cycle 24 from 2008 to 2019 using data obtained by NASA's Solar Dynamics Observatory (SDO) satellite. It was demonstrated that with few exceptions, the kappa-scheme predicts most imminent solar flares, as well as the precise location they will emerge from.

The researchers also discovered that a new parameter - the "magnetic twist flux density" close to a magnetic polarity inversion line on the solar surface - determines when and where solar flares probably occur and how large they are likely to be.

Previous flare prediction methods have relied on empirical relations in which the predictions of the previous day tend to continue into the next day even if flare activity changes.

In contrast, the kappa-scheme predicts large solar flares through a physics-based approach regardless of previous flare activity. While it takes a lot more work to implement the scheme in real-time operational forecasting, this study shows that the physics-based approach may open a new direction for flare prediction research.

Research Report: "A physics-based method that can predict imminent large solar flares"


Related Links
Nagoya University
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
A method has been developed to study extreme space weather events
Moscow, Russia (SPX) Aug 16, 2020
Scientists at Skolkovo Institute of Science and Technology (Skoltech), together with colleagues from the Karl-Franzens University of Graz and the Kanzelhohe Observatory (Austria), Jet Propulsion Laboratory of California Institute of Technology (USA), Helioresearch (USA) and Space Research Institute of the Russian Academy of Sciences (Russia) developed a method to study fast Coronal Mass Ejections, powerful ejections of magnetized matter from the outer atmosphere of the Sun. The results can help to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

ISS crew moved to Russian segment for 3 days to search for air leak

NASA perseveres through pandemic, looks ahead in 2020, 2021

Moonstruck 'aroma sculptor' builds scent from space

SOLAR SCIENCE
Safety of SpaceX suits an 'open question' says Russian designer

Ball Aerospace completes small satellite, Green Fuel Mission

NASA's Green Propellant Infusion Mission nears completion

Skyrora's Skylark Micro rocket launches from Iceland

SOLAR SCIENCE
Follow Perseverance in real time on its way to Mars

Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

NASA establishes Board to initially review Mars sample return plans

SOLAR SCIENCE
China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

SOLAR SCIENCE
Ban on import of communication satellites opens up opportunity says ISRO chief

Africa is investing more in space and satellite industry

SES picks SpaceX to launch four additional O3b mPower satellites

Satellite constellations could hinder astronomical research, scientists warn

SOLAR SCIENCE
US to spend $625 mn on super-computing research centers

NASA engineers checking InSight's weather sensors

New ground station brings laser communications closer to reality

Nellis AFB, Nev., opens pilots' virtual training center

SOLAR SCIENCE
Bacteria could survive travel between Earth and Mars when forming aggregates

Fifty new planets confirmed in machine learning first

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

Bacteria could survive the trip to Mars in the form of thick aggregates

SOLAR SCIENCE
Large shift on Europa was last event to fracture its surface

Technology ready to explore subsurface oceans on Ganymede

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.