. 24/7 Space News .
IRON AND ICE
Remote sensing data sheds light on when and how asteroid Ryugu lost its water
by Staff Writers
Providence RI (SPX) Jan 06, 2021

illustration only

Last month, Japan's Hayabusa2 mission brought home a cache of rocks collected from a near-Earth asteroid called Ryugu. While analysis of those returned samples is just getting underway, researchers are using data from the spacecraft's other instruments to reveal new details about the asteroid's past.

In a study published in Nature Astronomy, researchers offer an explanation for why Ryugu isn't quite as rich in water-bearing minerals as some other asteroids. The study suggests that the ancient parent body from which Ryugu was formed had likely dried out in some kind of heating event before Ryugu came into being, which left Ryugu itself drier than expected.

"One of the things we're trying to understand is the distribution of water in the early solar system, and how that water may have been delivered to Earth," said Ralph Milliken, a planetary scientist at Brown University and study co-author. "Water-bearing asteroids are thought to have played a role in that, so by studying Ryugu up close and returning samples from it, we can better understand the abundance and history of water-bearing minerals on these kinds of asteroids."

One of the reasons Ryugu was chosen as a destination, Milliken says, is that it belongs to a class of asteroids that are dark in color and suspected to have water-bearing minerals and organic compounds. These types of asteroids are believed to be possible parent bodies for dark, water- and carbon-bearing meteorites found on Earth known as carbonaceous chondrites.

Those meteorites have been studied in great detail in laboratories around the world for many decades, but it is not possible to determine with certainty which asteroid a given carbonaceous chondrite meteorite may come from.

The Hayabusa2 mission represents the first time a sample from one of these intriguing asteroids has been directly collected and returned to Earth. But observations of Ryugu made by Hayabusa2 as it flew alongside the asteroid suggest it may not to be as water-rich as scientists originally expected. There are several competing ideas for how and when Ryugu may have lost some of its water.

Ryugu is a rubble pile - a loose conglomeration of rock held together by gravity. Scientists think these asteroids likely form from debris left over when larger and more solid asteroids are broken apart by a large impact event. So it's possible the water signature seen on Ryugu today is all that remains of a previously more water-rich parent asteroid that dried out due a heating event of some kind.

But it could also be that Ryugu dried out after a catastrophic disruption and re-formation as a rubble pile. It's also possible that Ryugu had a few close spins past the sun in its past, which could have heated it up and dried out its surface.

The Hayabusa2 spacecraft had equipment aboard that could help scientists to determine which scenario was more likely. During its rendezvous with Ryugu in 2019, Hayabusa2 fired a small projectile into the asteroid's surface.

The impact created a small crater and exposed rock buried in the subsurface. Using a near-infrared spectrometer, which is capable of detecting water-bearing minerals, the researchers could then compare the water content of surface rock with that of the subsurface.

The data showed the subsurface water signature to be quite similar to that of the outermost surface. That finding is consistent with the idea that Ryugu's parent body had dried out, rather than the scenario in which Ryugu's surface was dried out by the sun.

"You'd expect high-temperature heating from the sun to happen mostly at the surface and not penetrate too far into the subsurface," Milliken said. "But what we see is that the surface and subsurface are pretty similar and both are relatively poor in water, which brings us back to the idea that it was Ryugu's parent body that had been altered."

More work needs to be done, however, to confirm the finding, the researchers say. For example, the size of the particles excavated from the subsurface could influence the interpretation of the spectrometer measurements.

"The excavated material may have had a smaller grain size than what's on the surface," said Takahiro Hiroi, a senior research associate at Brown and study co-author. "That grain size effect could make it appear darker and redder than its coarser counterpart on the surface. It's hard to rule out that grain-size effect with remote sensing."

Luckily, the mission isn't limited to studying samples remotely. Since Hayabusa2 successfully returned samples to Earth in December, scientists are about to get a much closer look at Ryugu. Some of those samples may soon be coming to the NASA Reflectance Experiment Laboratory (RELAB) at Brown, which is operated by Hiroi and Milliken.

Milliken and Hiroi say they're looking forward to seeing if the laboratory analyses corroborate the team's remote sensing results.

"It's the double-edged sword of sample return," Milliken said. "All of those hypotheses we make using remote sensing data will be tested in the lab. It's super-exciting, but perhaps also a little nerve-wracking. One thing is for certain, we're sure to learn a lot more about the links between meteorites and their parent asteroids."

Research paper


Related Links
Brown University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
NASA's first mission to the Trojan Asteroids integrates its second scientific instrument
Washington DC (SPX) Jan 06, 2021
NASA's Lucy mission is one step closer to launch as L'TES, the Lucy Thermal Emission Spectrometer, has been successfully integrated on to the spacecraft. "Having two of the three instruments integrated onto the spacecraft is an exciting milestone," said Donya Douglas-Bradshaw, Lucy project manager from NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The L'TES team is to be commended for their true dedication and determination." Lucy will be the first space mission to study the Tr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA Extends Exploration for Two Planetary Science Missions

NASA prepares Orion simulator for lunar mission training

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

NASA explores upper limits of global navigation systems for Artemis

IRON AND ICE
SpaceX Dragon capsule to make first of its kind science splashdown

SpaceX launches Turkish satellite from Florida

SpaceX, L3Harris pursue hypersonic missile defense system

SLS proceeding with Green Run Hot Fire

IRON AND ICE
Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

Tianwen 1 robotic probe to enter Mars orbit in Feb

IRON AND ICE
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

IRON AND ICE
NASA, FAA Partnership Bolsters American Commercial Space Activities

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

New funding for innovative space tech to help solve problems on Earth

IRON AND ICE
Physicists observe competition between magnetic orders

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

A good GRASP on the New Year

Autonomous in-space assembly and manufacturing moves closer to reality

IRON AND ICE
Discovery boosts theory that life on Earth arose from RNA-DNA mix

Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

IRON AND ICE
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.