![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Seoul, South Korea (SPX) Jan 26, 2018
KAIST researchers have discovered a technology that enhances the efficiency of Quantum Dot LEDs. Professor Yong-Hoon Cho from the Department of Physics and his team succeeded in improving the efficiency of Quantum Dot (QD) Light-Emitting Diodes (LEDs) by designing metallic nanostructure substrates. QD LEDs possess very small semiconductor light sources and are considered to be the new rising technology for high performance full-color display. However, it is expensive to manufacture displays with QD LED only. Existing QD-based displays use blue LEDs as a source of light, and they employ a method of color conversion through excitation of green and red QDs. There are two inconveniences with the existing QD-based displays. As mentioned previously, QD LED is costly, hence the unit price of QD-based displays is higher. Also, the efficiency of a liquid type of QDs is drastically lowered after contact with air. Professor Cho found the solution in a metallic nanostructure for lowering the production cost while improving the efficiency of QD LEDs. The team exploited the phenomenon of so-called surface plasmonic resonances when nanoscale metallic structures are exposed to light. Depending on the metal, the size, and the shape, the properties of metallic structures vary. The team used different metallic nanostructures for each QD LED - silver nanodisks for Red QDs and aluminum nanodisks for Green GDs - to make them more fluorescent. With brighter QDs, it requires fewer QDs to manufacture QD LEDs, contributing to a lower unit price. The team used silver and aluminum in this research, but metallic nanostructures can be redesigned according to the desired purposes. Professor Cho said, "Implementing metallic nanostructures into QD LEDs in a proper manner can reduce the quantity of the QDs required for the system, leading to lower unit prices."
![]() Beijinhg, China (SPX) Jan 29, 2018 Quantum computers are coming and attract attentions from scientists all over the world. However, as of today, no one can tell when a universal quantum computer with thousands of logical quantum bits will be built. At present, most quantum computer prototypes involve less than ten individually controllable qubits, and only exist in laboratories for the sake of either the great costs of devices or ... read more Related Links The Korea Advanced Institute of Science and Technology (KAIST) Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |