. 24/7 Space News .
WATER WORLD
Rapid melting of the world's largest ice shelf linked to solar heat in the ocean
by Staff Writers
Cambridge UK (SPX) Apr 30, 2019

illustration only

An international team of scientists has found part of the world's largest ice shelf is melting 10 times faster than the overall ice shelf average, due to solar heating of the surrounding ocean surface.

In a study of Antarctica's Ross Ice Shelf, which covers an area roughly the size of France, the scientists spent several years building up a record of how the north-west sector of this vast ice shelf interacts with the ocean beneath it. Their results, reported in the journal Nature Geoscience, show that the ice is melting much more rapidly than previously thought due to inflowing warm water.

"The stability of ice shelves is generally thought to be related to their exposure to warm deep ocean water, but we've found that solar heated surface water also plays a crucial role in melting ice shelves," said first author Dr Craig Stewart from the National Institute of Water and Atmospheric Research (NIWA) in New Zealand, who conducted the work while a PhD student at the University of Cambridge.

Although the interactions between ice and ocean occurring hundreds of metres below the surface of ice shelves seem remote, they have a direct impact on long-term sea level. The Ross Ice Shelf stabilises the West Antarctic ice sheet by blocking the ice which flows into it from some of the world's largest glaciers.

"Previous studies have shown that when ice shelves collapse, the feeding glaciers can speed up by a factor or two or three," said co-author Dr Poul Christoffersen from Cambridge's Scott Polar Research Institute. "The difference here is the sheer size of Ross Ice Shelf, which over one hundred times larger than the ice shelves we've already seen disappear."

The team collected four years of data from an oceanographic mooring installed under the Ross Ice Shelf by collaborators at NIWA. Using instruments deployed through a 260 metre-deep borehole, the team measured temperature, salinity, melt rates and ocean currents in the cavity under the ice.

The team also used an extremely precise custom-made radar system to survey the changing thickness of the ice shelf. Supported by Antarctica New Zealand and the Rutherford Foundation's Scott Centenary Scholarship at the Scott Polar Research Institute, Dr Stewart and Dr Christoffersen travelled more than 1000 km by snowmobile in order to measure ice thicknesses and map basal melt rates.

Data from the instruments deployed on the mooring showed that solar heated surface water flows into the cavity under the ice shelf near Ross Island, causing melt rates to nearly triple during the summer months.

The melting is affected by a large area of open ocean in front of the ice shelf that is empty of sea ice due to strong offshore winds. This area, known as the Ross Sea Polynya, absorbs solar heat quickly in summer and this solar heat source is clearly influencing melting in the ice shelf cavity.

The findings suggest that conditions in the ice shelf cavity are more closely coupled with the surface ocean and atmosphere than previously assumed, implying that melt rates near the ice front will respond quickly to changes in the uppermost layer of the ocean.

"Climate change is likely to result in less sea ice, and higher surface ocean temperatures in the Ross Sea, suggesting that melt rates in this region will increase in the future," said Stewart.

The potential for increasing melt rates in this region has implications for ice shelf stability due to the shape of the ice shelf. Rapid melting identified by the study happens beneath a thin and structurally important part of the ice shelf, where the ice pushes against Ross Island. Pressure from the island, transmitted through this region, slows the flow of the entire ice shelf.

"The observations we made at the front of the ice shelf have direct implications for many large glaciers that flow into the ice shelf, some as far as 900 km away," said Christoffersen.

While the Ross Ice Shelf is considered to be releatively stable, the new findings show that it may be more vulnerable than thought so far. The point of vulnerability lies in the fact that that solar heated surface water flows into the cavity near a stabilising pinning point, which could be undermined if basal melting intensifies further.

The researchers point out that melting measured by the study does not imply that the ice shelf is currently unstable. The ice shelf has evolved over time and ice lost by melting due to inflow of warm water is roughly balanced by the inputs of ice from feeding glaciers and snow accumulation. This balance is, however, depending on the stability provided by the Ross Island pinning point, which the new study identifies as a point of future vulnerability.

Research paper


Related Links
University of Cambridge
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
French aquarium sued over hammerhead shark deaths
Lille, France (AFP) April 29, 2019
An ocean conservation group said Monday it had filed suit against a French aquarium over the premature deaths of 30 endangered hammerhead sharks. The move came after the Nausicaa aquarium in the northern French port city of Boulogne-sur-Mer said on Thursday that its last hammerhead, acquired in Australian waters eight years ago, had died from a fungus infection. It had stopped feeding three weeks earlier and been placed under observation. The shark died from the same fungus that caused the d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Photobioreactor: oxygen and a source of nutrition for astronauts

New concept for novel fire extinguisher in space

Music for space

NASA astronaut to set record for longest spaceflight by a woman

WATER WORLD
SpaceX, NASA tight-lipped on cause of crew capsule incident

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

NASA accelerates pace of Core Stage production with new tool

Roscosmos, S7 Group Mull Developing Reusable Commercial Space Vehicle

WATER WORLD
InSight lander captures audio of first likely 'quake' on Mars

All-woman engineering team heads to NASA Mars competition

A small step for China: Mars base for teens opens in desert

Things Are Stacking Up for NASA's Mars 2020 Spacecraft

WATER WORLD
China to build moon station in 'about 10 years'

China to enhance international space cooperation

China opens Chang'e-6 for international payloads, asteroids next

China's commercial carrier rocket finishes engine test

WATER WORLD
Iridium Awarded Gateway Support and Maintenance Contract by the U.S. Department of Defense

The Third Installment of the SpaceFund Reality (SFR) rating

ESA opening up to new ideas

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

WATER WORLD
Ice-proof coating for big structures relies on a 'beautiful demonstration of mechanics'

Squid skin inspires creation of next-generation space blanket

Coffee machine helped physicists to make ion traps more efficient

New polymer films conduct heat instead of trapping it

WATER WORLD
Slime mold memorizes foreign substances by absorbing them

Necrophagy: A means of survival in the Dead Sea

Oil-eating bacteria found at the bottom of the ocean

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

WATER WORLD
Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.