. 24/7 Space News .
TIME AND SPACE
RIT scientists contribute to the first discovery of an intermediate-mass black hole
by Staff Writers
Rochester NY (SPX) Sep 10, 2020

This artist's concept illustrates a hierarchical scheme for merging black holes. LIGO and Virgo recently observed a black hole merger with a final mass of 142 times that of the sun, making it the largest of its kind observed in gravitational waves to date. The event is thought to have occurred when two black holes of about 66 and 85 solar masses spiraled into each other and coalesced.

The LIGO Scientific Collaboration and the Virgo Collaboration recently announced the discovery of GW190521, the most massive gravitational wave binary observed to date, and Rochester Institute of Technology scientists played an important role in identifying and analyzing the event.

They detected the signal with the National Science Foundation's Laser Interferometer Gravitational-wave Observatory (LIGO). The two inspiralling black holes had masses of about 85 and 66 solar masses, and resulted in the formation of a black hole remnant of 142 solar masses, providing the first clear detection of an "intermediate-mass" black hole.

"We're seeing something more massive than we've seen before, past the point where we thought that we could form black holes," said Associate Professor Richard O'Shaughnessy, a member of CCRG and the LIGO Scientific Collaboration. "It's therefore suggesting that our previous understanding was incomplete or maybe there's more out there than we previously envisioned."

Not only were the black holes in this event larger than those detected previously, the signal indicates that they could have been spinning about their own axes, at angles that were out of alignment with the axis of their orbit. The black holes' misaligned spins likely caused their orbits to wobble, or "precess," as the they spiraled toward each other.

Jacob Lange '20 Ph.D. (astrophysical sciences and technology) is a recent alum who contributed heavily to the analysis, using RIT-developed parameter estimation code and direct comparisons to numerical relativity simulations to estimate and corroborate the unique features of the event, including the masses and spin of the black holes. He said he is excited about the discovery because it challenges previous assumptions about black hole formation and raises important new questions about the fundamentals of how gravity works.

"We thought it would be almost impossible for us to measure precession at this high mass but somehow we were able to do it and it's not really clear why that was the case," said Lange. "It's not what we expected to be able to detect and hopefully we can learn a lot more from it."

The discovery and its implications are outlined in two papers published in Physical Review Letters and The Astrophysical Journal Letters and 10 researchers from RIT's Center for Computational Relativity and Gravitation are listed among the authors.

RIT's contributions also included providing computer simulations of Albert Einstein's equations by co-authors Professor Carlos Lousto and Research Associate James Healy used to compare the signal with and developing a waveform catalog.

While previous black holes detected by the European Virgo and the U.S. National Science Foundation LIGO are believed to have formed by collapsing stars, theory suggests that black holes with masses between 65 and 120 times the mass of the sun cannot be formed by this method. This perhaps means that intermediate black holes may form by another method, such as Pacman-like behavior where black holes grow by merging with smaller black holes.

Research paper


Related Links
Rochester Institute Of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Brazilian researcher proposes universal mechanism for ejection of matter by black holes
Sao Paulo, Brazil (SPX) Sep 03, 2020
Black holes can expel a thousand times more matter than they capture. The mechanism that governs both ejection and capture is the accretion disk, a vast mass of gas and dust spiraling around the black hole at extremely high speeds. The disk is hot and emits light as well as other forms of electromagnetic radiation. Part of the orbiting matter is pulled toward the center and disappears behind the event horizon, the threshold beyond which neither matter nor light can escape. Another, much larger, part is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Backbone of a spacecraft for missions to deep space

NASA declines seat on Russia's Soyuz for US astronaut ISS flight

Boeing's Starliner makes progress ahead of flight test with astronauts

NASA seeks next class of Flight Directors for human spaceflight missions

TIME AND SPACE
With DUST-2 launch, NASA's sounding rocket program is back on the range

Gilmour Space to launch Space Machines Company on first Eris rocket

NASA conducts SLS booster test for future Artemis missions

Northrop Grumman tests Space Launch System booster for Artemis

TIME AND SPACE
Surprise on Mars

NASA Readies Perseverance Mars Rover's Earthly Twin

Nereidum Montes a mountain landscape formed by water, ice and wind

ERC Space and Robotics Event 2020

TIME AND SPACE
China's reusable spacecraft returns to Earth after 2 days

Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

TIME AND SPACE
Dragonfly Aerospace emerges from SCS Aerospace Group

GMV announces the merger of its UK Company and NSL

Satellogic launches 11th satellite to low-earth orbit

Wanted: your ideas for ESA's future space missions

TIME AND SPACE
Making Perwave

Next artificial intelligence mission selected

Morocco, Netherlands, India, UAE to buy Longbow Fire Control Radars

US military sticks with Microsoft for $10 bn cloud contract

TIME AND SPACE
Telescope finds no signs of alien technology in 10 million star systems

SETI Institute and GNU Radio join forces

New observations show planet-forming disc torn apart by its three central stars

Study pinpoints process that might have led to first organic molecules

TIME AND SPACE
Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.