. 24/7 Space News .
TIME AND SPACE
Quark-gluon plasma flows like water, according to new study
by Staff Writers
London, UK (SPX) May 28, 2021

A Montage of Quark-gluon plasma representations from recent studies.

What does quark-gluon plasma - the hot soup of elementary particles formed a few microseconds after the Big Bang - have in common with tap water? Scientists say it's the way it flows.

A new study, published in the journal SciPost Physics, has highlighted the surprising similarities between quark-gluon plasma, the first matter thought to have filled the early Universe, and water that comes from our tap.

The ratio between the viscosity of a fluid, the measure of how runny it is, and its density, decides how it flows. Whilst both the viscosity and density of quark-gluon plasma are about 16 orders of magnitude larger than in water, the researchers found that the ratio between the viscosity and density of the two types of fluids are the same. This suggests that one of the most exotic states of matter known to exist in our universe would flow out of your tap in much the same way as water.

The matter that makes up our Universe is made of atoms, which consist of nuclei with orbiting electrons. Nuclei consist of protons and neutrons known collectively as nucleons and these in turn consist of quarks interacting via gluons. At very high temperatures - about one million times hotter than the centre of the Sun- quarks and gluons break free from their parent nucleons and instead form a dense, hot soup known as quark-gluon plasma.

It is thought that shortly after the Big Bang the early universe was filled with incredibly hot quark gluon plasma. This then cooled microseconds later to form the building blocks of all the matter found within our universe. Since the early 2000s scientists have been able to recreate quark-gluon plasma experimentally using large particle colliders, which has provided new insights into this exotic state of matter.

The ordinary matter we encounter on a daily basis are thought to have very different properties to the quark-gluon plasma found in the early beginnings of the Universe. For example, fluids like water are governed by the behaviour of atoms and molecules that are much larger than the particles found in quark-gluon plasma, and are held together by weaker forces.

However, the recent study shows that despite these differences the ratio of viscosity and density, known as the kinematic viscosity, is close in both quark-gluon plasma and ordinary liquids. This ratio is important because the fluid flow does not depend on viscosity alone but is governed by the Navier-Stokes equation which contains density and viscosity. Therefore, if this ratio is the same for two different fluids these two fluids will flow in the same way even if they have very different viscosities and densities.

Importantly, it's not just any liquid viscosity that coincides with the viscosity of quark-gluon plasma. Indeed, liquid viscosity can vary by many orders of magnitude depending on temperature. However, there is one very particular point where liquid viscosity has a nearly-universal lower limit. Previous research found that in that limit, fluid viscosity is governed by fundamental physical constants such as the Planck constant and the nucleon mass.

It is these constants of nature that ultimately decide whether a proton is a stable particle, and govern processes like nuclear synthesis in stars and the creation of essential biochemical elements needed for life. The recent study found that it is this universal lower limit of viscosity of ordinary fluids like water which turns out to be close to the viscosity of quark-gluon plasma.

Professor Kostya Trachenko, Professor of Physics at Queen Mary University of London and author of the recent paper, said: "We do not fully understand the origin of this striking similarity yet but we think it could be related to the fundamental physical constants which set both the universal lower limit of viscosity for both ordinary liquids and quark-gluon plasma."

"This study provides a fairly rare and delightful example of where we can draw quantitative comparisons between hugely disparate systems," continues Professor Matteo Baggioli from the Universidad Autonoma de Madrid. "Liquids are described by hydrodynamics, which leaves us with many open problems that are currently at the forefront of physics research. Our result shows the power of physics to translate general principles into specific predictions about complex properties such as liquid flow in exotic types of matter like quark-gluon plasma."

Understanding quark-gluon plasma and its flow is currently at the forefront of high-energy physics. Strong forces between quarks and gluons are described by quantum chromodynamics, one of the most comprehensive physical theories that exist. However whilst quantum chromodynamics provides a theory of strong nuclear force, it is very hard to solve and understand quark-gluon plasma properties using this alone.

"It is conceivable that the current result can provide us with a better understanding of the quark-gluon plasma," added Professor Vadim Brazhkin from the Russian Academy of Sciences. "The reason is that viscosity in liquids at their minimum corresponds to a very particular regime of liquid dynamics which we understood only recently. The similarity with the QGP suggests that particles in this exotic system move in the same way as in tap water."

Research Report: "Similarity between the kinematic viscosity of quark-gluon plasma and liquids at the viscosity minimum"


Related Links
Queen Mary University Of London
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Novel theory addresses centuries-old physics problem
Jerusalem, Israel (SPX) Apr 14, 2021
The "three-body problem," the term coined for predicting the motion of three gravitating bodies in space, is essential for understanding a variety of astrophysical processes as well as a large class of mechanical problems, and has occupied some of the world's best physicists, astronomers and mathematicians for over three centuries. Their attempts have led to the discovery of several important fields of science; yet its solution remained a mystery. At the end of the 17th century, Sir Isaac Newton s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA awards new spacecraft avionics development contract

New NASA Student Challenge offers hands-on tech development

Ultrasonic welding makes parts for NASA missions, commercial industry

NASA awards laser air monitoring system contract for Orion

TIME AND SPACE
NASA stacks elements for upper portion of Artemis II Core Stage

A passion for hypersonics propels success at AFRL Lab

PLD Space receives ESA contract to study reusing MIURA 5 boosters

Russian rocket launches UK telecom satellites after delay

TIME AND SPACE
NASA's Curiosity rover captures shining clouds on Mars

Newly discovered glaciers could aid human survival on Mars

Surviving an in-flight anomaly: what happened on Ingenuity's 6th flight

NASA software unlocks Martian rover productivity

TIME AND SPACE
China cargo craft docks with space station module

New advances inspire China's deep space exploration

China postpones launch of robotic cargo spacecraft

Space station core module in orbit to prep for next stage of construction

TIME AND SPACE
Kleos engages ISISPACE to build third satellite cluster

Iridium makes strategic investment in DDK Positioning for enhanced GNSS accuracy

European space program seeks first disabled astronaut

SES Prices EUR 625 Million Hybrid Bond Offering

TIME AND SPACE
ESA's Space Environment Report 2021

Canadian manipulator on ISS holed by space debris

AFRL Materials Characterization Facility pushes state of the art

Graphene solves concrete's big problem

TIME AND SPACE
Thirty year stellar survey cracks mysteries of galaxy's giant planets

Scientists develop new molecular tool to detect alien life

Deep oceans dissolve the rocky shell of water-ice planets

Origins of life researchers develop a new ecological biosignature

TIME AND SPACE
Jupiter antenna that came in from the cold

Europa's interior may be hot enough to fuel seafloor volcanoes

Experiments validate the possibility of helium rain inside Jupiter and Saturn

Deep water on Neptune and Uranus may be magnesium-rich









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.