24/7 Space News
ENERGY TECH
Princeton Chemistry demonstrates high-performance Sodium-ion cathode towards new battery technology
illustration only
Princeton Chemistry demonstrates high-performance Sodium-ion cathode towards new battery technology
by Wendy Plump for Princeton News
Princeton NJ (SPX) Feb 20, 2025

For decades, scientists have sought ways to counter our dependence on lithium-ion batteries. These traditional, rechargeable batteries energize today's most ubiquitous consumer electronics - from laptops to cell phones to electric cars. But raw lithium is expensive and is often sourced through fragile geopolitical networks.

This month, Princeton University's Dinca Group announces an exciting alternative that relies on an organic, high-energy cathode material to make sodium-ion batteries, advancing the likelihood that this technology will find commercialization with safe, cheaper, more sustainable components.

While scientists have made some progress with sodium-ion batteries, hurdles arise largely because of their low energy density: they have shorter battery-run times relative to their size. High power density, which relates to output, also factors into their performance. Achieving high energy density and high power density simultaneously has been an ongoing challenge for alternative batteries.

But the cathode material put forward by the Dinca Group, a layered organic solid called bis-tetraaminobenzoquinone (TAQ), outperforms traditional lithium-ion cathodes in both energy and power densities in a technology that is truly scalable.

Their research has potential for large-scale energy storage applications like data centers, power grids, and commercial-scale renewable energy systems, in addition to electric vehicles.

"Everyone understands the challenges that come with having limited resources for something as important as batteries, and lithium certainly qualifies as 'limited' in a number of ways," said Mircea Dinca, the Alexander Stewart 1886 Professor of Chemistry. "It's always better to have a diversified portfolio for these materials. Sodium is literally everywhere. For us, going after batteries that are made with really abundant resources like the organic matter and seawater is among our greatest research dreams.

"Energy density is something on a lot of people's minds because you can equate it with how much juice you get in a battery. The more energy density you have, the farther your car goes before you have to recharge it. We've answered quite emphatically that the new material we developed has the largest energy density, certainly on a per kilogram basis, and competes with the best materials out there even on a volumetric basis.

"Being on the front lines of developing a truly sustainable and cost-effective sodium ion cathode or battery is truly exciting."

With funding from Automobili Lamborghini S.p.A., the lab's research, High-Energy, High-Power Sodium-Ion Batteries from a Layered Organic Cathode, appears this month in the Journal of the American Chemical Society (JACS).

Approaching theoretical maximum capacity

The lab underscored the advantages of TAQ a year ago when they first reported on its utility for making lithium-ion batteries in ACS Central Science. Researchers simply continued investigating its potential, particularly when they found TAQ to be completely insoluble and highly conductive, two key technical advantages for an organic cathode material. A cathode is an essential component of all polarized devices.

So they endeavored to construct an organic, sodium-ion battery using the same material, TAQ. The process took about a year, as researchers had to adapt several design principles that could not be ported over from lithium-ion technology.

In the end, the results exceeded their expectations. Their cathode's performance nearly is close to a benchmark known as the theoretical maximum capacity.

"The binder we chose, carbon nanotubes, facilitates the mixing of TAQ crystallites and carbon black particles, leading to a homogeneous electrode," said Dinca Group Ph.D. and first author on the paper, Tianyang Chen. "The carbon nanotubes closely wrap around TAQ crystallites and interconnect them. Both of these factors promote electron transport within the electrode bulk, enabling an almost 100% active material utilization, which leads to almost theoretical maximum capacity.

"The use of carbon nanotubes considerably improves the rate performance of the battery, which means that the battery can store the same amount of energy within a much shorter charging time, or can store much more energy within the same charging time."

Chen said TAQ's benefit as a cathode material also include its stability against air and moisture, long lifespan, ability to withstand high temperatures, and environmental sustainability.

Research Report:High-Energy, High-Power Sodium-Ion Batteries from a Layered Organic Cathode

Related Links
Frick Chemistry Laboratory Princeton University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Scientists Probe Declining Earbud Battery Longevity
Los Angeles CA (SPX) Feb 05, 2025
Have you ever noticed how electronic devices, including wireless earbuds, seem to lose battery capacity faster the longer you use them? An international research team from The University of Texas at Austin set out to examine this familiar issue, known as battery degradation, by focusing on the earbuds that many people rely on daily. Through a series of x-ray, infrared, and other imaging approaches, the researchers investigated the hidden complexities behind these tiny devices and revealed why their batt ... read more

ENERGY TECH
Moon or Mars? NASA's future at a crossroads under Trump

Musk furious as critics push back at DOGE's blind destruction of S&T research funding

Super-precise satellite time synchronization achieves picosecond accuracy

First astronaut with a disability cleared for space station mission

ENERGY TECH
SpaceX eyes Monday for eighth test of Starship from Texas

Musk in X spat with Danish astronaut over 'abandoned' ISS crew

SpaceX debris enters atmosphere over Poland: agency

SpaceX to attempt landing booster off coast of Bahamas for first time

ENERGY TECH
China unveils innovative dual-mode robot for planetary exploration

Perseverance Rover's Groundbreaking Soil and Rock Samples

Sols 4443-4444: Four Fours for February

Texas A&M scholar secures NASA funding to examine Martian dune dynamics

ENERGY TECH
Chinese space firm showcases mobile-to-satellite communication tech

Names of Chinese Lunar Rover and Spacesuits Announced

Astronaut insights from mid mission aboard Tiangong

Chinese Satellite Companies Expand Global Services with Advanced Networks and Constellations

ENERGY TECH
K2 Space secures $110M Series B funding and achieves first in-space demonstration

Momentus Finalizes $5 Million Market-Priced Offering Under NASDAQ Rules

MDA Space secures $1.1BN deal with Globalstar for next-gen LEO satellite network

T-Mobile Starlink Beta Launches Nationwide

ENERGY TECH
Ukraine, US agree to terms of minerals, reconstruction deal

Powering Future Electronics with Ultrathin Vanadium Dioxide Films

China to build longest bridge in Central Asia

Metal Produced in Space Returns to Earth for Testing

ENERGY TECH
UC Irvine study explores habitability of exoplanets orbiting white dwarf stars

Apply for the Davie Postdoctoral Fellowship in Artificial Intelligence for Astronomy

Wobbling Stars Lead to Discovery of Hidden Celestial Bodies in Gaia Data

Scientists measure Earth's cosmic detectability

ENERGY TECH
NASA's Webb Uncovers Ancient Features of Trans-Neptunian Objects

New Study Suggests Trench-Like Features on Uranus' Moon Ariel May Be Windows to Its Interior

NASA Juno Mission Discovers Record-Breaking Volcanic Activity on Io

SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.