Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Planck Sees Tapestry Of Cold Dust
by Staff Writers
Paris, France (ESA) Mar 18, 2010


The image spans about 50 degrees of the sky. It is a three-colour combination constructed from Planck's two highest frequency channels (557 and 857 GHz, corresponding to wavelengths of 540 and 350 micrometres), and an image at the shorter wavelength of 100 micrometres made by the IRAS satellite. This combination visualises dust temperature very effectively: red corresponds to temperatures as cold as 10 degrees above absolute zero, and white to those of a few tens of degrees. Overall, the image shows local dust structures within 500 light-years of the Sun. Credits: ESA and the HFI Consortium, IRAS

Giant filaments of cold dust stretching through our Galaxy are revealed in a new image from ESA's Planck satellite. Analysing these structures could help to determine the forces that shape our Galaxy and trigger star formation.

Planck is principally designed to study the biggest mysteries of cosmology. How did the Universe form? How did the galaxies form? This new image extends the range of its investigations into the cold dust structures of our own Galaxy.

The image shows the filamentary structure of dust in the solar neighbourhood - within about 500 light-years of the Sun. The local filaments are connected to the Milky Way, which is the pink horizontal feature near the bottom of the image. Here, the emission is coming from much further away, across the disc of our Galaxy.

The image has been colour coded to discern different temperatures of dust. White-pink tones show dust of a few tens of degrees above absolute zero, whereas the deeper colours are dust at around -261 degrees C, only about 12 degrees above absolute zero. The warmer dust is concentrated into the plane of the Galaxy whereas the dust suspended above and below is cooler.

"What makes these structures have these particular shapes is not well understood," says Jan Tauber, ESA Project Scientist for Planck. The denser parts are called molecular clouds while the more diffuse parts are 'cirrus'. They consist of both dust and gas, although the gas does not show up directly in this image.

There are many forces at work in the Galaxy to help shape the molecular clouds and cirrus into these filamentary patterns. For example, on large scales the Galaxy rotates, creating spiral patterns of stars, dust, and gas. Gravity exerts an important influence, pulling on the dust and gas. Radiation and particle jets from stars push the dust and gas around, and magnetic fields also play a role, although to what extent is presently unclear.

Bright spots in the image are dense clumps of matter where star formation may take place. As the clumps shrink, they become denser and better at shielding their interiors from light and other radiation. This allows them to cool more easily and collapse faster.

ESA's Herschel space telescope can be used to study such regions in detail, but only Planck can find them all over the sky. Launched together in May 2009, Planck and Herschel are both studying the coolest components of the Universe. Planck looks at large structures, while Herschel can make detailed observations of smaller structures, such as nearby star-forming regions.

One puzzle to be solved is why there is similar filamentary structure on both the large and the small scale. "That's a big question," says Tauber.

The new image is a combination of data taken with Planck's High Frequency Instrument (HFI), at wavelengths of 540 micrometres and 350 micrometres, and a 100-micrometre image taken in 1983 with the IRAS satellite.

The HFI data were recorded as part of Planck's first all-sky survey at microwave wavelengths. As the spacecraft rotates, its instruments sweep across the sky. During every rotation, they cross the Milky Way twice. Thus, in the course of Planck's mission to precisely map the afterglow of the big bang, it is also producing exquisite maps of the Galaxy.

.


Related Links
ESA Planck
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Simulations Solve A 20-Year-Old Riddle
New York NY (SPX) Mar 17, 2010
New York NY (SPX) Mar 17, 2010 The birth of the most massive stars - those ten to a hundred times the mass of the Sun - has posed an astrophysical riddle for decades. Massive stars are dense enough to fuse hydrogen while they're still gathering material from the gas cloud, so it was a mystery why their brilliant radiation does not heat the infalling gas and blow it away. New simulations b ... read more


STELLAR CHEMISTRY
LRO Camera Releases Science Data From First Six Months

Solving A 37-Year Old Space Mystery

Space Available On Lunar Expeditions

New Lunar Images And Data Available To Public

STELLAR CHEMISTRY
Marsexpress Returns Phobos Flyby Images

Lost Into Space Goes The Martian Atmosphere

Opportunity Driving Away From Concepcion Crater

Russia Shortlists 11 For 520-Day Simulation Of Mars Mission

STELLAR CHEMISTRY
Marshall Celebrates 50 Years Of Engineering, Science And Technology

US lawmakers urge Obama to save NASA moon program

Bipartisan Legislation Introduced To Close The Space Gap

Go Into The Webb Telescope Clean Room

STELLAR CHEMISTRY
China To Conduct Maiden Space Docking In 2011

China chooses first women astronauts

Russian Launch Issues Delaying China's First Mars Probe

China Plans To Launch Third Unmanned Moon Probe Around 2013

STELLAR CHEMISTRY
Change Of Command As Expedition 22 Prepares For Return

Crew Does Science, Prepares For Undocking

World Space Agencies Confirm Serviceability Of ISS Through 2020

ISS Expedition 22 To Return To Earth On March 18

STELLAR CHEMISTRY
Launch Of Nimiq 6 In 2012

Shootout at Indian space facility

Arabsat-5A And COMS Begin Prep For Second Ariane 5 mission Of 2010

ILS Proton To Launch Intelsat 21 And 23

STELLAR CHEMISTRY
CoRoT-9b - A Temperate Exoplanet

'Cool Jupiter' widens search for exoplanets

How To Hunt For Exoplanets

Watching A Planetary Death March

STELLAR CHEMISTRY
Metallic Glass Yields Secrets Under Pressure

Ultra-Powerful Laser Makes Silicon Pump Liquid Uphill With No Added Energy

Raytheon, Motion Reality Ink Agreement For Virtual Applications

Shocking Recipe For Making Killer Electrons




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement