. 24/7 Space News .
STELLAR CHEMISTRY
Physicists trap light in nanoresonators for record time
by Staff Writers
St Petersburg, Russia (SPX) Jan 24, 2020

Conversion (doubling) of light frequency using a nanoresonator

An international team of researchers from ITMO University, the Australian National University, and Korea University have experimentally trapped an electromagnetic wave in a gallium arsenide nanoresonator a few hundred nanometers in size for a record-breaking time. Earlier attempts to trap light for such a long time have only been successful with much larger resonators.

In addition, the researchers have provided experimental proof that this resonator may be used as a basis for an efficient light frequency nanoconverter. The results of this research have raised great interest among the scientific community and were published in Science, one of the world's leading academic journals. Scientists have suggested about drastically new opportunities for subwavelength optics and nanophotonics - including the development of compact sensors, night vision devices, and optical data transmission technologies.

The problem of manipulating the properties of electromagnetic waves at the nanoscale is of paramount importance in modern physics. Using light, we can transfer data over long distances, record and read-out data, and perform other operations critical to data processing. To do this, light needs to be trapped in a small space and held there for a long period of time, which is something that physicists have only succeeded in doing with objects of a significant size, larger than the wavelength of light. This limits the use of optical signals in optoelectronics.

Two years ago, an international research team from ITMO University, the Australian National University, and the Ioffe Institute had theoretically predicted a new mechanism that allows scientists to trap light in miniature resonators much smaller than the wavelength of light and measured in hundreds of nanometers. However, until recently, no one had implemented the mechanism in practice.

An international team of researchers from ITMO University, the Australian National University, and Korea University was assembled to prove this hypothesis. First, they developed the concept: gallium arsenide was chosen as the key material, being a semiconductor with a high refractive index and strong nonlinear response in the near-infrared range. Researchers also decided on the most optimal shape for the resonator that would efficiently trap electromagnetic radiation.

In order to trap light efficiently, the ray must be reflected from the object's inner boundaries as many times as possible without escaping the resonator. One might assume that the best solution would be to make the object as complex as possible. As a matter of fact, it is just opposite: the more planes a body has, the more likely light is to escape it.

The near-ideal shape for this case was a cylinder, which possesses the minimal number of boundaries. One question that remained to be solved was which ratio of diameter to height would be the most effective for trapping of light. After mathematical calculations, the hypothesis had to be confirmed experimentally.

"We used gallium arsenide to create cylinders around 700 nanometers in height and with varying diameters close to 900 nanometers. They're almost invisible to the naked eye. As our experiments have shown, the reference particle had captured light for a time exceeding 200 times the period of one wave oscillation. Usually, for particles of that size the ratio is five to ten periods of wave oscillations. And we obtained 200! " says Kirill Koshelev, the the first co-author of the paper.

The scientists divided their study into two parts: one is an experimental confirmation of the theory expressed earlier, and the other is an example of how such resonators could be used. For instance, the trap has been utilized for a nanodevice capable of changing the frequency, and therefore color, of a light wave. Upon passing through this resonator, the infrared beam turned red, becoming visible to the human eye.

The frequency conversion of electromagnetic oscillations is not the only application for this technology. It also has potential applications in various sensing devices and even special glass coatings that would make it possible to produce colorful night-vision.

"If the resonator is able to efficiently trap light, then placing, say, a molecule next to it will increase the efficiency of the molecule's interaction with light by an order of magnitude, and the presence of even a singular molecule can easily be detected experimentally.

"This principle can be used in the development of highly-sensitive biosensors. Due to the resonators' ability to modify the wavelength of light, they can be used in night vision devices. After all, even in the darkness, there are electromagnetic infrared waves that are unseen to the human eye. By transforming their wavelength, we could see in the dark. All you'd need to do is to apply these cylinders to glasses or the windshield of a car. They'd be invisible to the eye but still allow us to see much better in the dark than we can on our own," explains Kirill Koshelev.

Besides gallium arsenide, such traps can be made using other dielectrics or semiconductors, such as, for instance, silicon, which is the most common material in modern microelectronics. Also, the optimal form for light trapping, namely the ratio of a cylinder's diameter to its height, can be scaled up to create larger traps.

Research paper


Related Links
ITMO University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Electronics at the speed of light
Konstanz , Germany (SPX) Dec 30, 2019
A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light. This could have major implications for the future of data processing and computing. Contemporary electronic components, which are traditionally based on silicon semiconductor technology, can be switched on or off within picoseconds (i.e. 10-12 seconds). Standard mobile phones and computers work at maximum ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Spacewalks, science and Beyond

Experimental ISS oven allows astronauts to bake cookies in two hours

ESA and Airbus sign contract for Bartolomeo platform on the International Space Station

Bartolomeo starts its journey to the International Space Station

STELLAR CHEMISTRY
Stennis Space Center sets stage for Artemis testing in 2020

Russia to supply US with six RD-180 rocket engines this year

Fire at Firefly Aerospace interrupts rocket test

Russia claims edge as US lags in hypersonic weapons development

STELLAR CHEMISTRY
Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

Nine finalists chosen in Mars 2020 rover naming contest

STELLAR CHEMISTRY
China to launch Mars probe in July

China's space-tracking vessels back from missions

China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

STELLAR CHEMISTRY
Second space data highway satellite set to beam

Europe backs space sector investment with EUR 200 million of financing

Budget battle hampers EU in space

Lockheed Martin Ships Mobile Communications Satellite To Launch Site

STELLAR CHEMISTRY
Buildings can become a global CO2 sink if made out of wood instead of cement and steel

Astroscale awarded grant From to commercialize active debris removal services

Smart materials are becoming smarter

Texas AM engineers develop recipe to dramatically strengthen body armor

STELLAR CHEMISTRY
Some non-photosynthetic orchids consist of dead wood

The skin of the earth is home to pac-man-like protists

NESSI emerges as new tool for exoplanet atmospheres

Astronomers find a way to form 'fast and furious' planets around tiny stars

STELLAR CHEMISTRY
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.