. | . |
Parts come together this year for DARPA's robotic in-space mechanic by Staff Writers Washington DC (SPX) Jul 21, 2020
Eyeing a launch in 2023, DARPA's Robotic Servicing of Geosynchronous Satellites (RSGS) program will focus the remainder of this year on completing the elements of the robotic payload. The objective of RSGS is to create an operational dexterous robotic capability to repair satellites in geosynchronous Earth orbit (GEO), extending satellite life spans, enhancing resilience, and improving reliability for the current U.S. space infrastructure. Earlier this year, DARPA partnered with Space Logistics LLC, a wholly owned subsidiary of Northrop Grumman, to provide the spacecraft bus, launch, and operations of the integrated spacecraft. DARPA will provide the payload that flies on the bus, including the robotic arms, through an agreement with the U.S. Naval Research Laboratory (NRL). In 2021, NRL will integrate the robotic arms onto the payload structure, and then is expected to begin environmental tests by the end of same year. After launch in 2023, it will take approximately nine months to reach GEO, and the program anticipates servicing satellites in mid-2024. With in-space robotic servicing, a variety of repairs or adjustments become possible, from "rescuing" a new spacecraft to adding sensors to upgrade an aging, but still operational satellite. The first step is to examine the spacecraft up close. "Close-up examination sounds simple, but it's currently not possible in GEO," said Joseph Parrish, program manager for RSGS in DARPA's Tactical Technology Office. "First, the RSGS spacecraft will fly around the client spacecraft to observe from a distance. Then, the RSGS spacecraft will grapple the client spacecraft to examine it at a centimeter scale. We may need to free a stuck solar array to allow a spacecraft to reach its full potential. Or we could add new sensor payloads, such as a space weather detector. "The addition of a 'jet pack' propulsion capability could essentially extend the spacecraft mission without the complicated operation of transferring propellant to unprepared spacecraft that were launched more than a decade ago. With persistent robotic servicing now becoming available, future spacecraft will be prepared for refueling and eliminate the need for the jet pack." The robotic servicer is designed to execute a series of scripted operations with humans in the loop throughout the process. The grappling sequence is fully autonomous because it moves too quickly for a human to control given the space-to-ground communications delay. DARPA's primary objective is establishing an on-orbit servicing industry that benefits both government and commercial clients. DARPA's agreement with Space Logistics aims to transition the dexterous robotic capability from DARPA to industry, and includes servicing government satellites for a set price. Parrish notes that about a quarter of the satellite assets in GEO are government-owned. The remainder are commercial satellites that could become a base for commercial in-space robotic servicing business. "The premise of RSGS is that DARPA will help propel the technology from demonstration to operational capability," Parrish said. "Over the past 25 years, the in-space robotics community has largely retired the technology risk. Some previous demonstrations brought along clients for mock in-space operations. RSGS is different because the intention is to remain in orbit over the long term and solve real problems on existing spacecraft."
Launch campaign for 2nd Mission Extension Vehicle begins at Kourou Kourou, French Guiana (SPX) Jul 02, 2020 Northrop Grumman has reported the arrival of the company-built Galaxy 30 (G-30) spacecraft for Intelsat and the Mission Extension Vehicle 2 (MEV-2) at the launch site in Kourou, French Guiana. The vehicles are scheduled to launch late July 2020, in a stacked configuration onboard an Ariane 5 rocket. "These satellites are excellent examples of our established leadership and innovation in the industry," said Frank DeMauro, vice president and general manager, tactical space systems, Northrop Grumman. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |