. 24/7 Space News .
STELLAR CHEMISTRY
Ottawa researchers find cheaper, faster way to measure the electric field of light
by Staff Writers
Ottawa, Canada (SPX) Oct 19, 2020

illustration only

Researchers at uOttawa have created a new method to measure the temporal evolution of electric fields with optical frequencies. The new approach, which works in ambient air, facilitates the direct measurement of the field waveform and could lead to breakthroughs in high-speed electronics.

To learn more, we talked to Aleksey Korobenko, a postdoctoral fellow in the Department of Physics at the University of Ottawa, and lead author of "Femtosecond streaking in ambient air", an article recently published in the journal Optica.

Please tell us about this research project.
"The aim of our project is to resolve the electric field oscillations in a light pulse. This allows one to control the motion of electrons in quantum systems on shortest time scales and may lead to important applications such as petahertz electronics - that are a million times faster than typical modern processors.

Such a measurement was first achieved using a technique called attosecond streaking - a generalization of the long-known conventional streak camera. When irradiated with a short electromagnetic pulse, the gas molecules give up their electrons that continue their motion, experiencing the pull from the field of a second, "streaking," pulse. Measuring the velocity that the electrons acquire due to this pull allows one to reconstruct the streaking pulse on attosecond time scales."

What did you discover?
"In our work we demonstrated that instead of measuring the velocities of individual electrons in low-density gas samples, which requires high vacuum conditions and/or a complicated setup, one can simply measure the current induced in air plasma under ambient conditions. We probe this current using a pair of metal electrodes. which facilitates a much simpler and faster measurement of a light wave oscillation."

Why is it important?
"We can access the time scales of the optical field oscillations in an inexpensive, fast and robust way. Owing to its simplicity, our method can become a useful tool for the ultrashort lasers research community, aiding the development of a next generation petahertz electronics."

How was this research conducted?
"The experiments were carried out using a unique, state-of-the-art, high-power laser generating ultrashort pulses from the visible to the infrared spectrum. Performing a measurement of these pulses under different experimental conditions, we benchmarked our method against the established measurement techniques."

Is there anything you'd like to add?
"Yes, this study is an international collaboration with researchers from the Ludwig-Maximilian University of Munich, the Max-Planck Institute for Quantum Optics in Germany and the Joint Attosecond Science Lab (NRC and uOttawa). Researchers of Canadian, Russian, German, American, Iranian, Chinese and French nationality participated in the project.

The research was conducted in the Joint Attosecond Science Laboratory, which is jointly operated by the University of Ottawa and the National Research Council."

Research paper


Related Links
University Of Ottawa
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Physicists conduct controlled transport of stored light experiment
Mainz, Germany (SPX) Oct 14, 2020
A team of physicists led by Professor Patrick Windpassinger at Johannes Gutenberg University Mainz (JGU) has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters. They have demonstrated that the controlled transport process and its dynamics has only little impact on the properties of the stored light. The researchers used ultra-cold rubidium-87 atoms as a storage medium for the light as to achieve a high level of storage efficiency and a long lifetime. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's Kate Rubins, 2 cosmonauts dock with ISS

NASA Announces Partners to Advance 'Tipping Point' Technologies for the Moon, Mars

SwRI planetary scientist to fly commercial on SpaceShipTwo

New crew reaches ISS in record time

STELLAR CHEMISTRY
Lockheed Martin to Acquire i3 Hypersonics Portfolio

Asteroid sampling technology tested on Blue Origin's suborbital rocket

Blue Origin launches, lands NASA moon landing sensor experiment

ISRO's human space flight rocket to have multiple backups for crucial systems

STELLAR CHEMISTRY
Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

China's Mars probe completes deep-space maneuver

NASA's Perseverance Rover Will Peer Beneath Mars' Surface

STELLAR CHEMISTRY
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

STELLAR CHEMISTRY
Spaceflight Inc. updates on next Electron and PSLV missions to expand smallsat constellations

Corrective measures needed from satellite "mega-constellation" operators

First space census launches today

Clean and greener tennis using space technology

STELLAR CHEMISTRY
Does science have a plastic problem? Microbiologists take steps to reducing plastic waste

What laser color do you like

Natural fibres threaded into satellites for safer missions

Ikea to buy back used furniture to reduce waste

STELLAR CHEMISTRY
No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

New research explores how super flares affect planets' habitability

STELLAR CHEMISTRY
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.