. 24/7 Space News .
TIME AND SPACE
Optically generated quantum fluids of light reveal exotic matter-wave states in condensed matter physics
by Staff Writers
Moscow, Russia (SPX) Oct 01, 2021

a, b Excitation intensity profile composed of Gaussian pump spots arranged in a Lieb pattern for two different lattice constants D and c an inverse Lieb pattern with the potential minima (dark areas) forming a conventional Lieb lattice. d-f Corresponding black-white surface plots of the pump induced potential landscapes with the polariton condensate density overlaid as red envelope. In d polariton condensation occurs on the potential maxima (gain guided condensates) resulting in highly energetic (ballistic) condensate waves whereas in e, f condensation takes place in the potential minima between pump spots.

Researchers from Skoltech and the University of Southampton, U.K., used all-optical methods to create an artificial lattice whose nodes house polaritons - quasiparticles that are half-light and half-matter excitations in semiconductors.

This so-called Lieb lattice, which usually does not occur in nature, enabled the team to demonstrate breakthrough results important for condensed matter physics. From the applications perspective, the laser-generated polariton lattice, reported in Nature Communications, can be used for the design of next-generation devices like optical computers reliant on dispersion management and guided light.

In the strong light-matter coupling regime, electronic excitations in a semiconductor placed between two mirrors that form a microcavity become strongly influenced by the photons trapped within. This gives rise to new quantum modes called exciton-polaritons, or just polaritons for short. They enable the study of hybrid matter-wave and photonic phenomena at the microscale. Under the right conditions, polaritons can form coherent many-body states of matter similar to Bose-Einstein condensates, providing access to exotic dissipative nonlinear dynamics.

The researchers decided to explore how these condensates behave in artificial optical lattices not usually found in nature. For this they used a programmable spatial light modulator to shape a laser beam into a lattice inside the cavity, not unlike the laser pointer caps for projecting fancy patterns on distant surfaces.

The generated polaritons both increased in number and became more energetic where the laser field was most intense. At high enough laser power, the polaritons started forming condensates that resided on the potential maxima of the lattice. In this so-called ballistic regime, high-energy polariton waves escaping the condensates scattered and diffracted across the lattice.

The researchers observed that when the lattice constant was decreased, the condensates underwent a phase transition from the ballistic regime to the opposite case of deeply trapped condensates now residing in the potential minima of the lattice. At intermediate lattice constants, the system seemed unable to "decide" whether the polariton waves should be delocalized or localized, and instead the condensates fractured across multiple energies. Such a transition had never been observed previously in polariton lattices.

The researchers then went on to demonstrate that they could produce one of the most exotic features in solid-state physics - completely dispersionless crystal bands, also known as flatbands - where particle mass becomes effectively infinite. For this they designed an optical Lieb lattice, not conventionally found in nature, which is known to possess flatbands.

The study reported in this story was co-authored by young researchers from the Hybrid Photonics Lab led by Professor Pavlos Lagoudakis, who provided the following comment on the team's findings: "Our lab has developed great expertise in optical lattices of polariton condensates, and with this work we have taken one more step forward.

"These results will be of great interest to a broad scientific community spanning nonlinear optics, condensed matter physics, cold atoms, light-matter physics, and polaritonics. This is the first demonstration of nontrivial phases of matter and flatband engineering in optically generated polariton lattices. Previously, flatband states in polariton systems had only been shown in lithographically written structures."

The first author of the paper, experimental physicist Dr. Sergey Alyatkin from Skoltech, and his colleague, theoretical physicist Dr. Helgi Sigurdsson from the University of Southampton, added: "Our work is a very nice demonstration of the advancements in optical control and richness in the field of polaritonics. The more we study microcavity polaritons in lattices, the more interesting effects we observe. Our latest results have opened a route to unexplored physics of nonstationary lattice mixtures of matter-wave quasiparticles, and we are not confining ourselves to a specific type of investigated lattice."

Research Report: "Quantum fluids of light in all-optical scatterer lattices"


Related Links
Skolkovo Institute Of Science And Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How to catch a perfect wave: scientists take a closer look inside the perfect fluid
Berkeley CA (SPX) Sep 20, 2021
Scientists have reported new clues to solving a cosmic conundrum: How the quark-gluon plasma - nature's perfect fluid - evolved into matter. A few millionths of a second after the Big Bang, the early universe took on a strange new state: a subatomic soup called the quark-gluon plasma. And just 15 years ago, an international team including researchers from the Relativistic Nuclear Collisions (RNC) group at Lawrence Berkeley National Laboratory (Berkeley Lab) discovered that this quark-gluon p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA TV coverage set for Russian film production mission launch

FAA clears Virgin Galactic to resume flights after investigation

Soyuz docks to new Nauka module port at ISS

Virgin Galactic cleared to launch after US closes safety probe

TIME AND SPACE
Ariane 6 launch complex inaugurated at Europe's Spaceport

FAA clears Virgin Galactic to resume flights after investigation

NASA seeks input from potential partners on next generation astromobile

DARPA'S Hypersonic Air-breathing Weapon Concept achieves successful flight

TIME AND SPACE
NASA plans careful restart for Mars helicopter after quiet period

Lake breach flooding played big role in Martian geography

Nitrogen-fixing bacteria help clover plants grow in Mars-like soil

Spin test a success, but Ingenuity Flight 14 delayed until after conjunction

TIME AND SPACE
China opens Shenzhou-12 return capsule at ceremony

China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

Chinese astronauts return to Earth after 90-day mission

TIME AND SPACE
Satellite maker Terran Orbital plans major plant in Florida

India to revise FDI policy for space sector, says ISRO chief Sivan

Adaptable optical communications to facilitate future low-earth orbit networks

SpaceX launches Starlink satellites into orbit from West Coast

TIME AND SPACE
Urban mining for metals flashes forward

New model simplifies orbital radar trade-off studies for environmental monitoring

Beam diagnostics for future laser wakefield accelerators

In Siberia, a copper mine hopes to become a global energy pivot

TIME AND SPACE
'Planet confusion' could slow Earth-like exoplanet exploration

Bare Super-Earths offer clues to evolution of hot atmospheres

Cloud-spotting on a distant exoplanet

Cloudy days on exoplanets may hide atmospheric water

TIME AND SPACE
Hubble shows winds in Jupiter's Great Red Spot are speeding up

Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.