. 24/7 Space News .
ENERGY TECH
Nuclear fusion: building a star on Earth is hard, which is why we need better materials
by Aneeqa Khan | Manchester University
Manchester UK (The Conversation) Mar 05, 2021

stock illustration only

Nuclear fusion is the process that powers the Sun and all other stars. During fusion, the nuclei of two atoms are brought close enough together that they fuse together, releasing huge amounts of energy.

Replicating this process on Earth has the potential to deliver almost limitless electricity with virtually zero carbon emissions and greater safety, and without the same level of nuclear waste as fission.

But building what is essentially a mini star on Earth and holding it together inside a reactor is not an easy task. It requires immense temperatures and pressures and extremely strong magnetic fields.

Right now we don't quite have materials capable of withstanding these extremes. But researchers like me are working to develop them, and we've found some exciting things along the way.

Tokamaks
There are many ways to contain nuclear fusion reactions on Earth, but the most common uses a doughnut shaped device called a tokamak. Inside the tokamak, the fuels for the reaction - isotopes of hydrogen called deuterium and tritium - are heated until they become a plasma. A plasma is when the electrons in the atoms have enough energy to escape the nuclei and start to float around. Because it's made up of electrically charged particles, unlike a normal gas, it can be contained in a magnetic field. This means it doesn't touch the reactor sides - instead, it floats in the middle in a doughnut shape.

When deuterium and tritium have enough energy they fuse together, creating helium, neutrons and releasing energy. The plasma has to reach temperatures of 100 million degrees Celsius for large amounts of fusion to happen - ten times hotter than the centre of the Sun. It has to be much hotter because the Sun has a much higher density of particles.

Although it's mostly contained within a magnetic field, the reactor still has to withstand huge temperatures. At Iter, the world's biggest fusion experiment, expected to be built by 2035, the hottest part of the machine would reach around 1,300?.

While the plasma will mostly be contained in a magnetic field, there are times when the plasma might collide with the walls of the reactor. This can result in erosion, fuel being implanted in the walls and modifications to the material properties.

On top of the extreme temperatures, we also have to consider the by-products of the fusion reaction of deuterium and tritium, like extremely high energy neutrons. Neutrons have no charge so can't be contained by the magnetic field. This means they hit against the walls of the reactor, causing damage.

The breakthroughs
All these incredibly complex challenges have contributed to huge advances in materials over the years. One of the most notable has been high temperature superconducting magnets, which are being used by various different fusion projects. These behave as superconductors at temperatures below the boiling point of liquid nitrogen. While this sounds cold, it's high compared to the much colder temperatures other superconductors need.

In fusion, these magnets are only metres away from the high temperatures inside the tokamak, creating an enormously large temperature gradient. These magnets have the potential to generate much stronger magnetic fields than conventional superconductors, which can dramatically reduce the size of a fusion reactor and may speed up the development of commercial fusion.

We do have some materials designed to cope with the various challenges we throw at them in a fusion reactor. The front-runners at the moment are reduced activation steels, which have an altered composition to traditional steels so the levels of activation from neutron damage is reduced, and tungsten.

One of the coolest things in science is something initially seen as a potential issue can turn into something positive. Fusion is no exception to this, and one very niche but noteworthy example is the case of tungsten fuzz. Fuzz is a nanostructure that forms on tungsten when exposed to helium plasma during fusion experiments. Initially considered a potential issue due to fears of erosion, there's now research into non fusion applications, including solar water splitting - breaking it down into hydrogen and oxygen.

However, no material is perfect, and there are several remaining issues. These include the manufacture of reduced activation materials at a large scale and the intrinsic brittleness of tungsten, which makes it a challenge to work with. We need to improve and refine on the existing materials we have.

The challenges
Despite the huge advances in the field of materials for fusion, there's still a lot of work that needs to be done. The main issue is we rely on several proxy experiments to recreate potential reactor conditions, and have to try and stitch this data together, often using very small samples. Detailed modelling work helps to extrapolate predictions of material performance. It would be much better if we could test our materials in real situations.

The pandemic has had a major impact on materials research because it's been more difficult to carry out real life experiments. It's really important that we continue to develop and use advanced models to predict material performance. This can be combined with advances in machine learning, to identify the key experiments we need to focus on and identify the best materials for the job in future reactors.

The manufacturing of new materials has typically been in small batches, focusing only on producing enough materials for experiments. Going forward, more companies will continue to work on fusion and there will be more programmes working on experimental reactors or prototypes.

Because of this, we are getting to the stage where we need to think more about industrialisation and development of supply chains. As we edge closer to prototype reactors and hopefully power plants in the future, developing robust large scale supply chains will be a huge challenge.


Related Links
Fusion, Manchester University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Laser-cooled plasma-in-a-bottle could answer many questions
Houston TX (SPX) Mar 02, 2021
Rice University physicists have discovered a way to trap the world's coldest plasma in a magnetic bottle, a technological achievement that could advance research into clean energy, space weather and astrophysics. "To understand how the solar wind interacts with the Earth, or to generate clean energy from nuclear fusion, one has to understand how plasma - a soup of electrons and ions - behaves in a magnetic field," said Rice Dean of Natural Sciences Tom Killian, the corresponding author of a publis ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
China extends innovation lead over US

NASA spacewalk Sunday will prepare for new solar power

Futuristic space technology concepts selected by NASA for initial study

Suspected breach plugged in Russian ISS module as air leak hunt continues

ENERGY TECH
SpaceX ends 3rd Starship landing attempt in flaming success before exploding minutes later

Virgin Galactic posts revenue loss of $238m in Q4

SpaceX CEO Reacts to Rumors SEC Will Investigate Him Over Dogecoin Tweets

Long March 6A maiden flight due this year, report says

ENERGY TECH
Testing proves its worth with successful mars parachute deployment

SwRI scientist captures evidence of dynamic seasonal activity on a Martian sand dune

Martian moons have a common ancestor

Mastcam-Z's First 360-Degree Panorama

ENERGY TECH
China explores space with self-reliance, open mind

China begins assembly of Long March 5B to launch space station core

Xi lauds China's progress in space missions

Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

ENERGY TECH
SpaceX plans 20th Starlink launch Sunday evening from Florida

'Space Bridge' across the world will help UK and Australia get ahead in global space race

Business support scheme to boost UK space industry has lift off

Advanced Manufacturing Supercluster Funds Deployment Of Flexible Automation Solutions

ENERGY TECH
Engineering the boundary between 2D and 3D materials

Marshall Spinoffs increase 3D printing capabilities, tackle foot odor

Thyssenkrupp Aerospace lands order from RUAG International

Brand new findings on fire safety in space

ENERGY TECH
Microbes deep beneath seafloor survive on byproducts of radioactive process

Big galaxies steal star-forming gas from their smaller neighbours

The Milky Way may be swarming with planets with oceans and continents like here on Earth

On the quest for other Earths

ENERGY TECH
SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.