![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Dulles VA (SPX) Jan 07, 2021
Northrop Grumman reports that the company has completed the first phase of its 14th cargo resupply mission to the International Space Station under NASA's Commercial Resupply Mission (CRS-2) contract. Cygnus was released by the station's robotic arm at 10:11 a.m. ET, carrying more than 4,000 pounds of disposable cargo and will remain in orbit for approximately two weeks for the secondary phase of its mission. "For more than six years, Northrop Grumman has supported human spaceflight by delivering critical cargo to astronauts aboard the International Space Station and acting as a host to a number of science experiments and technology demonstrations," said Frank DeMauro, vice president and general manager, tactical space systems, Northrop Grumman. "Our Cygnus spacecraft will once again demonstrate the capabilities and flexibility we offer our customers by conducting critical experiments during our secondary mission phase." Cygnus' secondary mission includes conducting NASA's Spacecraft Fire Safety Experiment V (Saffire-V) experiment, which helps researchers understand how fire behaves in microgravity, and hosting the SharkSat payload. SharkSat is a Northrop Grumman-developed prototype payload mounted to the Cygnus spacecraft that will provide data about the performance of key technologies in a space environment for future missions. SharkSat is driving rapid innovation in technology development and growing Northrop Grumman's next generation of technical leaders. The "S.S. Kalpana Chawla", launched Oct. 2 aboard Northrop Grumman's Antares rocket, carrying nearly 8,000 pounds (approximately 3,600 kg) of scientific research, supplies and equipment to astronauts living on the station. The vehicle has been docked with the orbiting laboratory since Oct. 5.
![]() ![]() Roscosmos Head reveals likely cause of crack in ISS module hull Moscow (Sputnik) Jan 05, 2021 While the crack has already been located and patched up by the space station's crew, a more permanent solution is expected once special repair equipment reaches the ISS in February. The crack discovered in the hull of the Russian segment of the International Space Station (ISS) in October might have been caused by a micrometeorite impact, head of Russia's space agency Roscosmos Dmitry Rogozin said. During an interview on Rossiya 24 TV channel, he suggested that the damage may also be "techno ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |