. 24/7 Space News .
STELLAR CHEMISTRY
No evidence of an influence of dark matter on the force between nuclei
by Staff Writers
Duesseldorf, Germany (SPX) May 19, 2020

HD+ molecular ions (yellow and red pairs of dots: proton and deuteron; the electron is not shown) suspended in an ultra-high vacuum between atomic ions (blue dots), which are immobilised using a laser beam (blue). An electromagnetic wave (red-brown discs) causes the molecular ions to rotate. A further laser beam (green) records evidence of this excitation. The drawing is not to scale.

The universe mainly consists of a novel substance and an energy form that are not yet understood. This 'dark matter' and 'dark energy' are not directly visible to the naked eye or through telescopes. Astronomers can only provide proof of their existence indirectly, based on the shape of galaxies and the dynamics of the universe. Dark matter interacts with normal matter via the gravitational force, which also determines the cosmic structures of normal, visible matter.

It is not yet known whether dark matter also interacts with itself or with normal matter via the other three fundamental forces - the electromagnetic force, the weak and the strong nuclear force - or some additional force. Even very sophisticated experiments have so far not been able to detect any such interaction. This means that if it does exist at all, it must be very weak.

In order to shed more light on this topic, scientists around the globe are carrying out various new experiments in which the action of the non-gravitational fundamental forces takes place with as little outside interference as possible and the action is then precisely measured.

Any deviations from the expected effects may indicate the influence of dark matter or dark energy. Some of these experiments are being carried out using huge research machines such as those housed at CERN, the European Organization for Nuclear Research in Geneva. But laboratory-scale experiments, for example in Dusseldorf, are also feasible, if designed for maximum precision.

The team working under guidance of Prof. Stephan Schiller from the Institute of Experimental Physics at HHU has presented the findings of a precision experiment to measure the electrical force between the proton ("p") and the deuteron ("d") in the journal Nature. The proton is the nucleus of the hydrogen atom (H), the heavier deuteron is the nucleus of deuterium (D) and consists of a proton and a neutron bound together.

The Dusseldorf physicists study an unusual object, HD+, the ion of the partially deuterated hydrogen molecule. One of the two electrons normally contained in the electron shell is missing in this ion. Thus, HD+ consists of a proton and deuteron bound together by just one electron, which compensates for the repulsive electrical force between them.

This results in a particular distance between the proton and the deuteron, referred to as the 'bond length'. In order to determine this distance, the HHU physicists have measured the rotation rate of the molecule with eleven digits precision using a spectroscopy technique they recently developed. The researchers used concepts that are also relevant in the field of quantum technology, such as particle traps and laser cooling.

It is extremely complicated to derive the bond length from the spectroscopy results, and thus to deduct the strength of the force exerted between the proton and the deuteron. This is because this force has quantum properties. The theory of quantum electrodynamics (QED) proposed in the 1940s must be used here. A member of the author team spent two decades to advance the complex calculations and was recently able to predict the bond length with sufficient precision.

This prediction corresponds to the measurement result. From the agreement one can deduce the maximum strength of a modification of the force between a proton and a deuteron caused by dark matter. Prof. Schiller comments: "My team has now pushed down this upper limit more than 20-fold. We have demonstrated that dark matter interacts much less with normal matter than was previously considered possible. This mysterious form of matter continues to remain undercover, at least in the lab!"

Research Report: "Precise test of quantum electrodynamics and determination of fundamental constants with HD+ ions"


Related Links
Heinrich-Heine University Duesseldorf
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Could Dark Matter Be Hiding in Existing Data
Berkeley CA (SPX) May 05, 2020
Dark matter has so far defied every type of detector designed to find it. Because of its huge gravitational footprint in space, we know dark matter must make up about 85 percent of the total mass of the universe, but we don't yet know what it's made of. Several large experiments that hunt for dark matter have searched for signs of dark matter particles knocking into atomic nuclei via a process known as scattering, which can produce tiny flashes of light and other signals in these interactions. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Searching with Sasquatch: Recovering Orion

Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

Spacesuit for the ground

JAXA HTV-9 spacecraft carries science, technology to ISS

STELLAR CHEMISTRY
Hypersonic Test Center for US Army speeds ahead

NASA takes preliminary steps to resume SLS Core Stage testing work

Pryer Aerospace signs long-term agreement with Blue Origin to support New Glenn Heavy-Lift Launch Vehicle

Digipen student project heading to space on Blue Origin's New Shepard rocket

STELLAR CHEMISTRY
ExoMars rover upgrades and parachute tests

The horst and graben landscape of Ascuris Planum

Study suggests terrestrial life unlikely to contaminate Mars

The little tires that could go to Mars

STELLAR CHEMISTRY
China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

STELLAR CHEMISTRY
Strings of pearls in the night sky - the Starlink satellite project

RUAG Space offers new electronics for constellations

Bankrupt OneWeb seeks DoD financing to keep assets from Chinese purchase

Blackjack focuses on risk reduction flights and simulations

STELLAR CHEMISTRY
AFRL satellite duo probing Earth's radiation belts

Rocket Crafters concludes tests of 3D-printed hybrid engine

Russia Probes Explosion of One of Its Used Boosters in Orbit

Space age for metals, foams and the living

STELLAR CHEMISTRY
TRAPPIST-1 planetary orbits not misaligned

Amsterdam researchers observe iron in exoplanetary atmosphere

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

New 'planetary quarantine' report reviewing risks of alien contamination

STELLAR CHEMISTRY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.