. 24/7 Space News .
TIME AND SPACE
New type of atomic clock keeps time even more precisely
by Jennifer Chu for MIT News
Boston MA (SPX) Dec 17, 2020

Atoms are trapped in an optical cavity composed of two mirrors. When a "squeezing" laser is set through the cavity, the atoms are entangled, and their frequency is measured with a second laser, as a platform for more precise atomic clocks.

Atomic clocks are the most precise timekeepers in the world. These exquisite instruments use lasers to measure the vibrations of atoms, which oscillate at a constant frequency, like many microscopic pendulums swinging in sync. The best atomic clocks in the world keep time with such precision that, if they had been running since the beginning of the universe, they would only be off by about half a second today.

Still, they could be even more precise. If atomic clocks could more accurately measure atomic vibrations, they would be sensitive enough to detect phenomena such as dark matter and gravitational waves. With better atomic clocks, scientists could also start to answer some mind-bending questions, such as what effect gravity might have on the passage of time and whether time itself changes as the universe ages.

Now a new kind of atomic clock designed by MIT physicists may enable scientists to explore such questions and possibly reveal new physics.

The researchers report in the journal Nature that they have built an atomic clock that measures not a cloud of randomly oscillating atoms, as state-of-the-art designs measure now, but instead atoms that have been quantumly entangled. The atoms are correlated in a way that is impossible according to the laws of classical physics, and that allows the scientists to measure the atoms' vibrations more accurately.

The new setup can achieve the same precision four times faster than clocks without entanglement.

"Entanglement-enhanced optical atomic clocks will have the potential to reach a better precision in one second than current state-of-the-art optical clocks," says lead author Edwin Pedrozo-Penafiel, a postdoc in MIT's Research Laboratory of Electronics.

If state-of-the-art atomic clocks were adapted to measure entangled atoms the way the MIT team's setup does, their timing would improve such that, over the entire age of the universe, the clocks would be less than 100 milliseconds off.

The paper's other co-authors from MIT are Simone Colombo, Chi Shu, Albert Adiyatullin, Zeyang Li, Enrique Mendez, Boris Braverman, Akio Kawasaki, Saisuke Akamatsu, Yanhong Xiao, and Vladan Vuletic, the Lester Wolfe Professor of Physics.

Time limit
Since humans began tracking the passage of time, they have done so using periodic phenomena, such as the motion of the sun across the sky. Today, vibrations in atoms are the most stable periodic events that scientists can observe. Furthermore, one cesium atom will oscillate at exactly the same frequency as another cesium atom.

To keep perfect time, clocks would ideally track the oscillations of a single atom. But at that scale, an atom is so small that it behaves according to the mysterious rules of quantum mechanics: When measured, it behaves like a flipped coin that only when averaged over many flips gives the correct probabilities. This limitation is what physicists refer to as the Standard Quantum Limit.

"When you increase the number of atoms, the average given by all these atoms goes toward something that gives the correct value," says Colombo.

This is why today's atomic clocks are designed to measure a gas composed of thousands of the same type of atom, in order to get an estimate of their average oscillations. A typical atomic clock does this by first using a system of lasers to corral a gas of ultracooled atoms into a trap formed by a laser. A second, very stable laser, with a frequency close to that of the atoms' vibrations, is sent to probe the atomic oscillation and thereby keep track of time.

And yet, the Standard Quantum Limit is still at work, meaning there is still some uncertainty, even among thousands of atoms, regarding their exact individual frequencies. This is where Vuletic and his group have shown that quantum entanglement may help. In general, quantum entanglement describes a nonclassical physical state, in which atoms in a group show correlated measurement results, even though each individual atom behaves like the random toss of a coin.

The team reasoned that if atoms are entangled, their individual oscillations would tighten up around a common frequency, with less deviation than if they were not entangled. The average oscillations that an atomic clock would measure, therefore, would have a precision beyond the Standard Quantum Limit.

Entangled clocks
In their new atomic clock, Vuletic and his colleagues entangle around 350 atoms of ytterbium, which oscillates at the same very high frequency as visible light, meaning any one atom vibrates 100,000 times more often in one second than cesium. If ytterbium's oscillations can be tracked precisely, scientists can use the atoms to distinguish ever smaller intervals of time.

The group used standard techniques to cool the atoms and trap them in an optical cavity formed by two mirrors. They then sent a laser through the optical cavity, where it ping-ponged between the mirrors, interacting with the atoms thousands of times.

"It's like the light serves as a communication link between atoms," Shu explains. "The first atom that sees this light will modify the light slightly, and that light also modifies the second atom, and the third atom, and through many cycles, the atoms collectively know each other and start behaving similarly."

In this way, the researchers quantumly entangle the atoms, and then use another laser, similar to existing atomic clocks, to measure their average frequency. When the team ran a similar experiment without entangling atoms, they found that the atomic clock with entangled atoms reached a desired precision four times faster.

"You can always make the clock more accurate by measuring longer," Vuletic says. "The question is, how long do you need to reach a certain precision. Many phenomena need to be measured on fast timescales."

He says if today's state-of-the-art atomic clocks can be adapted to measure quantumly entangled atoms, they would not only keep better time, but they could help decipher signals in the universe such as dark matter and gravitational waves, and start to answer some age-old questions.

"As the universe ages, does the speed of light change? Does the charge of the electron change?" Vuletic says. "That's what you can probe with more precise atomic clocks."


Related Links
MIT-Harvard Center for Ultracold Atoms
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Advanced atomic clock makes a better dark matter detector
Washington DC (SPX) Nov 16, 2020
JILA researchers have used a state-of-the-art atomic clock to narrow the search for elusive dark matter, an example of how continual improvements in clocks have value beyond timekeeping. Older atomic clocks operating at microwave frequencies have hunted for dark matter before, but this is the first time a newer clock, operating at higher optical frequencies, and an ultra-stable oscillator to ensure steady light waves, have been harnessed to set more precise bounds on the search. The research is de ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA and Boeing target new launch date for next Starliner flight test

NASA exploration mission integral to 2020 National Space Policy

Researchers discover a new superhighway system in the Solar System

Nanoracks Bishop airlock takes flight

TIME AND SPACE
NASA Awards Venture Class Launch Services Demonstration 2 Contract

SpaceX's 'Starship' rocket prototype explodes during vertical landing maneuver

Space Force studies idea of national spaceport authority

Orbex secures $24M in funding round for UK space launch

TIME AND SPACE
Water on Mars not as widespread as previously thought, study finds

Five hidden gems are riding aboard NASA's Perseverance Mars 2020 rover

Best region for life on Mars was far below surface

New tech can get oxygen, fuel from Mars's salty water

TIME AND SPACE
China plans to launch new space science satellites

How it took decades for space program to take off

China to Begin Construction of Its Space Station Next Year

Moon mission tasked with number of firsts for China

TIME AND SPACE
Agnikul Cosmos sign agreement with ISRO as an IN-SPACe Entity

NXTCOMM Appoints Management Team Members

Government funds UK companies at the forefront of space innovation

Germany blocks Chinese takeover of satellite tech company: report

TIME AND SPACE
Germany opens competition probe into Facebook VR headsets

One ring to bind them all

Rocket engine 3D parts survive 23 hot-fire tests

New XLAB facility enhances Aerospace's prototyping capabilities

TIME AND SPACE
Rochester researchers uncover key clues about the solar system's history

UC Riverside-led team looks back to find life beyond

Key building block for organic molecules discovered in meteorites

Fast-moving gas flowing away from young star's asteroid belt may be caused by icy comet vaporisation

TIME AND SPACE
NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.