. 24/7 Space News .
CARBON WORLDS
New record set for carbon-carbon single bond length
by Staff Writers
Sapporo, Japan (SPX) Mar 19, 2018

This is the chemical structure of the compound which showed the longest C-C bond.

A stable organic compound has been synthesized with a record length for the bond between its carbon atoms, exceeding the assumed limit.

Hokkaido University researchers have synthesized an organic compound with a longer bond between carbon atoms than ever before - exceeding the assumed limit for carbon-carbon single bond (C-C) lengths. The researchers termed it a "hyper covalent bond."

The novel polycyclic hydrocarbon named 10c is stable, and an X-ray analysis showed that its C-C bond lengths was as long as 1.806 angstroms, longer than the previously reported world records for hydrocarbons.

Chemical bonds are formed between atoms by the transfer or sharing of electrons. Bonds become shorter the more electrons they have participating in their formation. Also, the longer the bond, the weaker it becomes. In such chemical bonds, the C-C single bond length is generally 1.54 angstroms, and altering C-C bond lengths can give organic compounds unique properties.

Previously, other researchers had estimated that the strength of C-C bonds becomes zero, making them completely unstable, when they reach a theoretical limit of 1.803 angstroms in length. But this calculation assumes a linear relationship between bond strength and length.

Yusuke Ishigaki and Takanori Suzuki of Hokkaido University and their team thought it was highly likely they could find a longer C-C bond due to evidence that the relationship between bond strength and length is actually non-linear.

By using what they call a "core-shell strategy," the team first built a theoretical compound in which the core, formed of long and thus weak carbon bonds, was stabilized by an outer shell of fused rings of the organic compound dibenzocycloheptatriene. Changing the structure of the side shell, for example by the bridging or non-bridging of the naphthalene skeleton, can lengthen the distance between the C-C bonds at the core.

The team then synthesized two compounds formed of colorless crystals, which they called 10a and 10b, and a third, called 10c, formed of orange crystals. X-ray analyses indicated long C-C bond lengths in all three compounds, with those in 10c reaching a record length of 1.806 angstroms when heated up to 127 C (260.6 F).

Although the longest bond was assumed to be unstable, the compound did not degrade even in a solution heated to high temperatures. This stability was supposedly given by the shells protecting the bond.

"By applying 'core-shell strategy' in molecular design, it is highly likely that we could find an even longer C-C bond," says Yusuke Ishigaki. "It's not just about breaking records, it's more about examining the fundamentals of chemistry." The study was published in the Cell Press journal Chem on March 8.

Research paper


Related Links
Hokkaido University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Diamond discovery under pressure
Edmonton, Canada (SPX) Mar 12, 2018
For the first time, scientists have found Earth's fourth most abundant mineral - calcium silicate perovskite - at Earth's surface. "Nobody has ever managed to keep this mineral stable at the Earth's surface," said Graham Pearson, a professor in the University of Alberta's Department of Earth and Atmospheric Sciences and Canada Excellence Research Chair Laureate. He explained the mineral is found deep inside Earth's mantle, at 700 kilometres. "The only possible way of preserving this mineral at the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
A Frommer's guide to the future of interplanetary travel

NASA Awards $96 Million to U.S. Small Businesses for Tech Research, Development

Russia, China strike deal to jointly explore outer space

Astronaut Scott Kelly weighs in on the 'State of Science'

CARBON WORLDS
India working on 16 ton payload capacity to GEO Transfer Orbit

Elon Musk plans to launch spacecraft for Mars in 2019

ILS secures additional launch orders for Proton medium vehicle

SpaceX launches innovative secondary payload dispenser along side Hispasat

CARBON WORLDS
Opportunity is Halfway Down the Valley

Next NASA Mars Rover Reaches Key Manufacturing Milestone

Travis AFB delivers NASA InSight Spacecraft

Asteroids and comets shower Mars with organics

CARBON WORLDS
China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

Satellite will test plan for global China led satcom network

China plans rocket sea-launch

CARBON WORLDS
Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

Britain hopes to keep stars aligned with EU's space projects

Lockheed Martin Begins Assembly of JCSAT-17 Commercial Communications Satellite

CARBON WORLDS
NASA, ATLAS to Mature Portable Space Communications Technology

CosmoQuest releases Mappers 2.0 for crater mapping

Scientists Declare War on Space Radiation

UNH researchers find space radiation is increasingly more hazardous

CARBON WORLDS
The search for interstellar water

JHU performs first laboratory simulation of exoplanet atmospheric chemistry

Yale's Expres Instrument ready to find the next Earth Analog

NASA's Kepler Spacecraft Nearing the End as Fuel Runs Low

CARBON WORLDS
Unveiling the depths of Jupiter's winds

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's turmoil more than skin deep: researchers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.