. 24/7 Space News .
SOLAR SCIENCE
New concept for rocket thruster exploits the mechanism behind solar flares
by Staff Writers
Plainsboro NJ (SPX) Jan 29, 2021

PPPL physicist Fatima Ebrahimi in front of an artist's conception of a fusion rocket.

A new type of rocket thruster that could take humankind to Mars and beyond has been proposed by a physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory. The device would apply magnetic fields to cause particles of plasma, electrically charged gas also known as the fourth state of matter, to shoot out the back of a rocket and, because of the conservation of momentum, propel the craft forward. Current space-proven plasma thrusters use electric fields to propel the particles.

The new concept would accelerate the particles using magnetic reconnection, a process found throughout the universe, including the surface of the sun, in which magnetic field lines converge, suddenly separate, and then join together again, producing lots of energy. Reconnection also occurs inside doughnut-shaped fusion devices known as tokamaks.

"I've been cooking this concept for a while," said PPPL Principal Research Physicist Fatima Ebrahimi, the concept's inventor and author of a paper detailing the idea in the Journal of Plasma Physics.

"I had the idea in 2017 while sitting on a deck and thinking about the similarities between a car's exhaust and the high-velocity exhaust particles created by PPPL's National Spherical Torus Experiment (NSTX)," the forerunner of the laboratory's present flagship fusion facility. "During its operation, this tokamak produces magnetic bubbles called plasmoids that move at around 20 kilometers per second, which seemed to me a lot like thrust."

Fusion, the power that drives the sun and stars, combines light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei that represents 99% of the visible universe - to generate massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Current plasma thrusters that use electric fields to propel the particles can only produce low specific impulse, or speed. But computer simulations performed on PPPL computers and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory in Berkeley, California, showed that the new plasma thruster concept can generate exhaust with velocities of hundreds of kilometers per second, 10 times faster than those of other thrusters.

That faster velocity at the beginning of a spacecraft's journey could bring the outer planets within reach of astronauts, Ebrahimi said. "Long-distance travel takes months or years because the specific impulse of chemical rocket engines is very low, so the craft takes a while to get up to speed," she said. "But if we make thrusters based on magnetic reconnection, then we could conceivably complete long-distance missions in a shorter period of time."

There are three main differences between Ebrahimi's thruster concept and other devices. The first is that changing the strength of the magnetic fields can increase or decrease the amount of thrust. "By using more electromagnets and more magnetic fields, you can in effect turn a knob to fine-tune the velocity," Ebrahimi said.

Second, the new thruster produces movement by ejecting both plasma particles and magnetic bubbles known as plasmoids. The plasmoids add power to the propulsion and no other thruster concept incorporates them.

Third, unlike current thruster concepts that rely on electric fields, the magnetic fields in Ebrahimi's concept allow the plasma inside the thruster to consist of either heavy or light atoms. This flexibility enables scientists to tailor the amount of thrust for a particular mission.

"While other thrusters require heavy gas, made of atoms like xenon, in this concept you can use any type of gas you want," Ebrahimi said. Scientists might prefer light gas in some cases because the smaller atoms can get moving more quickly.

This concept broadens PPPL's portfolio of space propulsion research. Other projects include the Hall Thruster Experiment which was started in 1999 by PPPL physicists Yevgeny Raitses and Nathaniel Fisch to investigate the use of plasma particles for moving spacecraft. Raitses and students are also investigating the use of tiny Hall thrusters to give small satellites called CubeSats greater maneuverability as they orbit the Earth.

Ebrahimi stressed that her thruster concept stems directly from her research into fusion energy. "This work was inspired by past fusion work and this is the first time that plasmoids and reconnection have been proposed for space propulsion," Ebrahimi said. "The next step is building a prototype!"

Research paper


Related Links
Princeton Plasma Physics Laboratory
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Magnetic waves explain mystery of Sun's outer layer
London, UK (SPX) Jan 25, 2021
The Sun's extremely hot outer layer, the corona, has a very different chemical composition from the cooler inner layers, but the reason for this has puzzled scientists for decades. One explanation is that, in the middle layer (the chromosphere), magnetic waves exert a force that separates the Sun's plasma into different components, so that only the ion particles are transported into the corona, while leaving neutral particles behind (thus leading to a build-up of elements such as iron, silicon and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
NASA and Boeing target new launch date for next Starliner flight test

NASA spacewalk partially hooks up new science platform

Showtime for ColKa

Axiom Space reveals historic first private crew to visit ISS

SOLAR SCIENCE
Virgin Orbit to launch first satellite for Dutch Ministry Of Defense

NASA Marshall, SpaceX team celebrates engines of success

Framework agreement facilitates future slot bookings by ESA

Hot Fire met many objectives, test assessment underway

SOLAR SCIENCE
Purdue scientist ready for Mars rover touchdown

NASA's Perseverance Rover 22 days from Mars landing

New Mars rover may collect first sounds recorded on another planet

Six things to know about NASA's Mars helicopter on its way to Mars

SOLAR SCIENCE
China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

Major space station components cleared for operations

SOLAR SCIENCE
Barbs fly over satellite projects from Musk, Bezos

Sirius XM says its newest satellite has malfunctioned

UN and UK sign agreement to promote space sustainability

MDA appoints new VP of Satellite Systems

SOLAR SCIENCE
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

D-Orbit's ION satellite carrier rides SpaceX's Falcon 9 to orbit

European team to collaborate in optical communication

SOLAR SCIENCE
CHEOPS finds unique planetary system

The 7 rocky TRAPPIST-1 planets may be made of similar stuff

First six-star system where all six stars undergo eclipses

Puzzling six-exoplanet system with rhythmic movement challenges theories of how planets form

SOLAR SCIENCE
A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.