24/7 Space News
CHIP TECH
New candidate for universal memory is fast, low-power, stable and long-lasting
file illustration only
New candidate for universal memory is fast, low-power, stable and long-lasting
by Laura Castanon for Stanford News
Stanford CA (SPX) Jan 24, 2024

We are tasking our computers with processing ever-increasing amounts of data to speed up drug discovery, improve weather and climate predictions, train artificial intelligence, and much more. To keep up with this demand, we need faster, more energy-efficient computer memory than ever before.

Researchers at Stanford have demonstrated that a new material may make phase-change memory-which relies on switching between high and low resistance states to create the ones and zeroes of computer data-an improved option for future AI and data-centric systems. Their scalable technology, as detailed recently in Nature Communications, is fast, low-power, stable, long-lasting, and can be fabricated at temperatures compatible with commercial manufacturing.

"We are not just improving on a single metric, such as endurance or speed; we are improving several metrics simultaneously," said Eric Pop, the Pease-Ye Professor of Electrical Engineering and Materials Science and Engineering (by courtesy) at Stanford. "This is the most realistic, industry-friendly thing we've built in this sphere. I'd like to think of it as a step towards a universal memory."

A faster nonvolatile memory
Today's computers store and process data in separate locations. Volatile memory-which is fast but disappears when your computer turns off-handles the processing, while nonvolatile memory-which isn't as fast but can hold information without constant power input-takes care of the long-term data storage. Shifting information between these two locations can cause bottlenecks while the processor waits for large amounts of data to be retrieved.

"It takes a lot of energy to shuttle data back and forth, especially with today's computing workloads," said Xiangjin Wu, a doctoral candidate co-advised by Pop and Philip Wong, the Willard R. and Inez Kerr Bell Professor in the School of Engineering and lead author on the paper. "With this type of memory, we're really hoping to bring the memory and processing closer together, ultimately into one device, so that it uses less energy and time."

There are many technical hurdles to achieving an effective, commercially viable universal memory capable of both long-term storage and fast, low-power processing without sacrificing other metrics, but the new phase change memory developed in Pop's lab is as close as anyone has come so far with this technology. The researchers hope that it will inspire further development and adoption as a universal memory.

The memory relies on GST467, an alloy of four parts germanium, six parts antimony, and seven parts tellurium, which was developed by collaborators at the University of Maryland. Pop and his colleagues found ways to sandwich the alloy between several other nanometer-thin materials in a superlattice, a layered structure they've previously used to achieve good nonvolatile memory results.

"The unique composition of GST467 gives it a particularly fast switching speed," said Asir Intisar Khan, who earned his doctorate in Pop's lab and is co-lead author on the paper. "Integrating it within the superlattice structure in nanoscale devices enables low switching energy, gives us good endurance, very good stability, and makes it nonvolatile-it can retain its state for 10 years or longer."

Setting a new bar
The GST467 superlattice clears several important benchmarks. Phase change memory can sometimes drift over time-essentially the value of the ones and zeros can slowly shift-but their tests show that this memory is extremely stable. It also operates at below 1 volt, which is the goal for low-power technology, and is significantly faster than a typical solid-state drive.

"A few other types of phase-change memory can be a bit faster, but they operate at higher voltage," Pop said. "With all these computing technologies, there are tradeoffs between speed and energy. The fact that we're switching at a few tens of nanoseconds while operating below one volt is a big deal."

The superlattice also packs a good amount of memory cells into a small space. The researchers have shrunk the memory cells down to 40 nanometers in diameter-less than half the size of a coronavirus. That's not quite as dense as it could be, but the researchers are exploring ways to compensate by stacking the memory in vertical layers, which is possible thanks to the superlattice's low fabrication temperature and the techniques used to create it.

"The fabrication temperature is well below what you need," Pop said. "People are talking about stacking memory in thousands of layers to increase density. This type of memory can enable such future 3D layering."

Research Report:Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory

Related Links
Stanford University School of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
TSMC to launch chipmaking plant in Japan, but US plant to face delays
Taipei (AFP) Jan 20, 2024
Taiwan's TSMC will open its latest chipmaking foundry on Japan's Kyushu island on February 24, but a plant in the United States will face further delays, the company said Thursday. Taiwan Semiconductor Manufacturing Company - which counts Apple and Nvidia as clients - controls more than half the world's output of silicon wafers, used in everything from smartphones to cars and missiles. In recent years, the company has had to navigate geopolitical tussles between the United States and China as ... read more

CHIP TECH
Sierra Space unveils full-scale prototype of expandable space station structure

Salad in space? New study says it's not a healthy choice

Ax-3 Crew Joins Expedition 70 in Space Station for Dual Operations and Research

ESA's Marcus Wandtembarks on historic Muninn Mission aboard ISS

CHIP TECH
CAS Space achieves new milestone with Kinetica 1 Y3 launch deploying 5 satellites

Spain's PLD Space Selected for European Institutional Space Launch Contracts

China's LandSpace achieves new feat with Zhuque-3's Vertical Recovery Test

Equatorial Launch Australia unveils advanced horizontal integration facility

CHIP TECH
NASA helicopter's mission ends after three years on Mars

New Year, New images from Perseverance on Mars

Polka Dots and Sunbeams: Sol 4078

Buried water ice at the Martian equator

CHIP TECH
Shenzhou 18 and 19 crews undertake intensive training for next missions

Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

CHIP TECH
Eutelsat OneWeb and Paratus South Africa join forces to enhance satellite connectivity in South Africa

Into the Starfield

Booz Allen Ventures Invests in Albedo's groundbreaking VLEO satellite technology

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

CHIP TECH
Unibap to Supply Advanced Data Handling Computer for NASA's HyTI-2 ACMES Mission

Redwire joins forces with Blue Origin on Blue Ring Space Mobility Platform

GMV Enhances German Space Surveillance Capabilities with Advanced SST Software

New, portable antenna could help restore communication after disasters

CHIP TECH
Shallow soda lakes show promise as cradles of life on Earth

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

New Insights into Earth's Earliest Life Forms Discovered in Palaeoarchaean Rock Samples

Revolutionizing Chemistry: Over 4 Billion Early-Life Reactions Simulated via Blockchain

CHIP TECH
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.