. 24/7 Space News .
CARBON WORLDS
New York City's greenery absorbs a surprising amount of its carbon emissions
by Staff Writers
New York NY (SPX) Jan 06, 2023

Zooming in on several completely built-up blocks in the Prospect Heights neighborhood of Brooklyn, pink areas are buildings; purple ones are paved surfaces including sidewalks and parking areas. In backyards and along the streets, dark greens signify tree canopy; light greens, shrubs or grass.

A study of vegetation across New York City and some densely populated adjoining areas has found that on many summer days, photosynthesis by trees and grasses absorbs all the carbon emissions produced by cars, trucks and buses, and then some. The surprising result, based on new hyper-local vegetation maps, points to the underappreciated importance of urban greenery in the carbon cycle. The study was just published in the journal Environmental Research Letters.

Using fine-grained vegetation maps, the researchers documented large amounts of previously unrecognized greenery scattered in small spots even in highly developed areas, and found it is performing an outsize role in the exchange of atmospheric gases. They reached their conclusions by modeling carbon uptake of every bit of lawn and tree canopy, and studying data from instrument towers that measure the air's carbon dioxide content on a continuous basis.

The findings are significant because urban areas account for more than 70 percent of human carbon dioxide emissions; New York City is the United States' number one emitter, and third largest in the world.

"There is a lot more greenery than we thought, and that's what drives our conclusion," said lead author Dandan Wei, a postdoctoral researcher at the Columbia Climate School's Lamont-Doherty Earth Observatory. "This tells us that the ecosystem matters in New York City, and if it matters here, it probably matters everywhere else."

Most previous studies have calculated carbon uptake of vegetation by looking mainly at contiguous tracts of forest and grassland, but these comprise only about 10 percent of the metro area. Using newly available aerial radar imagery of New York City that mapped vegetation in unprecedented 6-inch grids, Wei and her colleagues included developed areas-the other 90 percent of the region, left out in most models. Here, they were able to pick out individual street trees, little backyard gardens, overgrown vacant lots and other small features. Outlying areas beyond the five boroughs-about a third of the 2,170-square kilometer study area-were broken down into 30-meter grids, which is still relatively fine resolution.

"Most people have assumed that New York City is just a grey box, that it's biogenically dead," said Lamont-Doherty atmospheric chemist Roisin Commane, who coauthored the paper. "But just because there's a concrete sidewalk somewhere doesn't mean there's not also a tree that's shading it."

The researchers determined that tree canopies cover some 170 square kilometers of New York City, or about 22 percent of its area; grasses account for another 94 square kilometers, or 12 percent. To figure out how the greenery interacted with carbon emissions, they looked at June through August 2018, when the metro area emitted a total of some 14.7 million tons of carbon dioxide. The largest sources were the power industry and energy for buildings; road transport accounted for about 1.2 million tons. Global average CO2 levels are currently about 417 parts per million, but around New York, they routinely reach 460 or more, said Commane.

Levels would be even higher were it not for all the vegetation, especially that in the newly mapped developed areas; they accounted for nearly 85 percent of the daily carbon uptake, according to the study. On many summer days, total uptake equaled up to 40 percent of a summer afternoon's total emissions from all sources. The scientists saw carbon dioxide levels swing up in the morning in tandem with traffic and other activities, and come down somewhat in afternoon, as grass and trees went to work.

The caveat: carbon uptake of course occurs only during the local growing season, which in relatively chilly New York runs mid-April to mid-October. Vegetation in cities situated in warmer climates probably plays a bigger role in carbon uptake, said Wei.

New York City is actively pushing to increase its tree cover. One of the team's next projects: characterizing coverage by species, and helping figure out the relative benefits of different ones. Hardy, fast-growing oaks are a common choice for this region, but research has found they also give off a fair amount of isoprene, a volatile compound that reacts with emissions from vehicles to create polluting ozone. Sweet gums, another common tree, produce a similar amount of isoprene, but have different growth characteristics. "More trees are always going to be better, no matter what they are," said Wei. "But we could use an assessment of which ones are the best."

The study was coauthored by Andrew Reinmann of the City University of New York and Luke Schiferl of Lamont-Doherty.

Research Report:High resolution modeling of vegetation reveals large summertime biogenic CO2 fluxes in New York City


Related Links
Columbia Climate School
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
New method helps understand the global organic carbon cycle
Bremen, Germany (SPX) Jan 05, 2023
Oceans serve as a sink for carbon. This means that carbon from the atmosphere is stored in the oceans. However, a distinction is made between organic and inorganic carbon. The organic carbon bound in marine sediments is also a source of oxygen. Until now, it has been common practice to determine the mass balance between inorganic and organic carbon - but this method is considered inaccurate. A team from the USA, Great Britain and Germany has now developed a different approach. Their goal was to be able ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
SpaceX Transporter-6 successfully launched Europe's first solar sail mission

Ukraine startups at CES strive to help the nation triumph

Green tech fights for limelight at CES gadget fest

Station crew wraps up a busy year as Soyuz review continues

CARBON WORLDS
Virgin Orbit completes final End-to-end Rehearsal for first UK launch

Sidus Space awarded Bechtel Cable Assembly contract for Mobile Launcher 2

Artemis I Orion spacecraft returns to Kennedy Space Center

Latest launch marks 64th mission for China in 2022

CARBON WORLDS
A Scuff for the New Year: Sols 3699-3702

MOXIE sets consecutive personal bests and Mars records for oxygen production

NASA explores a winter wonderland on Mars

The 10 Days of Christmas: Sols 3689-3698

CARBON WORLDS
China's space exploration spurred by helping humanity

China sets multiple records in space during

Chinese space-tracking ship sets sail for new missions

China's space sector set to rocket into future

CARBON WORLDS
Spire Global launched 6 satellites on SpaceX Transporter-6 Mission

Chinese commercial space company to launch stackable satellites

Iridium introduces its latest IoT data service

US space entities examine future space technology

CARBON WORLDS
Riddle solved: Why was Roman concrete so durable?

Stop and smell the metaverse roses: Virtual world on display at CES

From bees to bullets, CES tech show gives gamers the feels

High-performance visible-light lasers that fit on a fingertip

CARBON WORLDS
Assembly begins on NASA's next tool to study exoplanets

What it would take to discover life on Saturn's icy moon Enceladus

Kepler's first exoplanet is spiraling toward its doom

Two exoplanets may be mostly water, Hubble and Spitzer find

CARBON WORLDS
PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission

Juno spacecraft recovering memory after 47th Flyby of Jupiter

Four decade study finds mysterious patterns in temperatures at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.