![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Elizabeth Goldbaum for GSFC News Greenbelt MD (SPX) Nov 15, 2019
A new instrument with its eye on the Moon is taking off aboard a high-altitude NASA plane to measure the Moon's brightness and eventually help Earth observing sensors make more accurate measurements. The airborne Lunar Spectral Irradiance Instrument (air-LUSI) is flying aboard NASA's ER-2 airplane. The ER-2 is able to soar above clouds, about 70,000 feet above ground. The flights, which occur at night to avoid scattered light from the Sun, began Nov. 13 and will wrap up Nov. 17 from NASA's Armstrong Flight Research Center in Palmdale, California. The NASA-funded instrument is "measuring how much sunlight is reflected by the Moon at various phases in order to accurately characterize it and expand how the Moon is used to calibrate Earth observing sensors", said Kevin Turpie, a professor at the University of Maryland, Baltimore County, leading the air-LUSI effort. Turpie and his team are funded by NASA's Earth Science Division and the National Institute of Standards and Technology (NIST).
How the Moon helps Earth sensors To account for any changes in sensitivity, VIIRS and other satellite instruments calibrate their sensors by looking at a known reference and comparing how the most recent look compares to previous ones. If the sensor sees the reference differently than before, it knows it needs to recalibrate or adjust its sensitivity. Currently, many instruments carry an opaque or white material, called a diffuser, that reflects sunlight and acts as a reference for sensor calibration. However, although the Sun provides a steady output, its harsh rays degrade the diffuser over time. The Moon, on the other hand, is an ideal diffuser since its reflectance of sunlight is stable and more similar to Earth's in brightness. Scientists have long known about the Moon's potential. "Not long after the Apollo program, a group at the U.S. Geological Survey (USGS) developed a way of characterizing the Moon so that Earth observing satellites could use it for calibration," Turpie said. The USGS Robotic Lunar Observatory (ROLO) in Flagstaff, Arizona, measured the Moon on a monthly basis from 1995 to 2003. Tom Stone, a scientist at USGS, along with Hugh Kieffer, a former scientist with USGS, developed a ROLO-based model that has and continues to be used to help calibrate Earth observing sensors in instruments, like SeaWiFS, which operated from 1997 to 2010 and measured ocean color to monitor phytoplankton. SeaWiFS looked at the Moon on a regular basis to note any changes in its instrument's sensitivity. Although a lot of Earth observing mission calibration teams use ROLO, there can be large discrepancies in their lunar calibration data, Stone said. The hope is that air-LUSI's highly accurate measurements will characterize those discrepancies and determine if they're caused by internal biases in the ROLO model or something else. "We can't validate ROLO calibrations to any better than 5%," Stone said. "Air-LUSI can improve ROLO or determine what needs to be improved." Air-LUSI's novel instruments are able to obtain highly accurate lunar spectral irradiance measurements that will have the lowest ever uncertainty (less than 1%), Turpie said, which establishes the Moon as an absolute calibration reference and helps remote sensing scientists determine if Earth observing sensors, like VIIRS, are recording actual changes on Earth or changes in their instruments. Although Earth observing missions can look at the Moon at the same time and phase every month as a way to notice trends in their instruments' sensitivity, they haven't yet been able to use the Moon as an absolute calibration reference, Kurt Thome, a project scientist for Earth observing missions at NASA's Goddard Space Flight Center in Greenbelt, Maryland, said. What does it mean to be an absolute calibration reference? If you compare two people standing next to each other, it's easy to see which person is taller. However, if these two people are at opposite ends of the world, the only way to compare their heights would be with an absolute reference, like a ruler. Air-LUSI is aiming to make the Moon an absolute calibration reference, which means an instrument would only need to look at the Moon once to determine the instrument's absolute sensitivity, while comparing looks over time to see if the instrument is changing, Thome said.
A collaborative effort The first component is called IRIS, short for Irradiance Instrument Subsystem, and was designed by NIST. It includes an instrument able to take precise measurements of the Moon while sitting in a temperature and pressure-controlled enclosure. The second component is a robotic telescope mount called ARTEMIS (Autonomous, Robotic Telescope Mount Instrument Subsystem) designed and built by the University of Guelph. ARTEMIS has a camera that scans the sky until it finds the Moon and directs the telescope to point at it and keep it locked in place, regardless of aircraft motion. The final component is the High-altitude ER-2 Adaptation, or HERA. HERA includes all the connective tissue, like cables and mounting equipment, which holds the instrument together and to the plane, as well as the thermal stabilizing components. Air-LUSI is able to record data during flight and download the data from the plane to the ground.
One small step for air-LUSI, one giant leap for Earth science NASA's upcoming Ocean Color Imager, aboard the Phytoplankton Aerosols Clouds and ocean Ecology (PACE) satellite, also intends to use the Moon for calibration, Turpie said. "Air-LUSI's Moon measurements make it easier for people to justify using the Moon to calibrate their instruments," Thome said.
![]() ![]() China confirms reception of data from Gaofen-7 satellite Beijing (XNA) Nov 11, 2019 China has successfully tracked and received data from the newly launched Earth observation satellite Gaofen-7, according to the Chinese Academy of Sciences (CAS). The China Remote Sensing Satellite Ground Station has received 616.6 GB of data with the highest transmission rate among civil Earth observation satellite data reception, according to the Aerospace Information Research Institute under the CAS. The Gaofen-7 satellite has adopted variable coding and modulation technology, effectively ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |