. | . |
NanoAvionics selected for Norwegian-Dutch research mission for radar signals by Staff Writers London, UK (SPX) Apr 21, 2020
A consortium of Norwegian and Dutch research centres selected satellite integrator NanoAvionics to build two nanosatellites, 'Birkeland' and 'Huygens'. The purchase order is part of a military use of space (MilSpace) project under a bilateral strategic mutual assistance in research and technology (SMART) memorandum of understanding (MoU). The two nanosatellites are intended to demonstrate the concept of a space based spectrum monitoring system to geolocate radar signals. It is the first time for Norway and the Netherlands to launch a formation of satellites. The BROS (binational radiofrequency observing satellites) mission is the first known two-satellite system to detect, classify, and accurately geolocate Radio Frequency signals, including navigation radars used on ships, by combining the measurement angle of arrival (AoA) and time difference of arrival (TDOA). Simultaneous detection of pulsed radio signals by both satellites flying in tandem enables accurate geolocation during all weather conditions. "Exchanging science, research and technology experience in this MilSpace mission is a great start for flourishing partnerships with the participating organisations," said Vytenis J. Buzas, co-founder and CEO of NanoAvionics. "The agreement is also an example of the new cross over between commercial and military space missions. This was made possible by standardising NanoAvionics' bus design which allows our nanosatellites to host a wide variety of payloads for diverse applications." "Birkeland" and "Huygens" will both be based on NanoAvioncs' pre-configured M6P nanosatellite bus with a deployable solar panel configuration, high precision attitude determination and control system (ADCS) and a propulsion system. The mass of each 6U nanosatellite will be up to 10 kilograms. The launch of the two nanosatellites is scheduled for the second quarter of 2022 when they will be placed into a polar low Earth orbit (LEO) with an altitude range of 450 to 600 km. Both will be positioned in the same orbital plane with a separation of 15-25 km, allowing the two nanosatellites to simultaneously detect emissions from radar systems. For a polar LEO orbit of 600 km altitude, the payload antenna will be able to cover any point on the Earth's surface at least four times per day. Drawing from experience from the Norwegian NorSat-3 and the Dutch BRIK-II missions, the consortium for this strategic and bilateral mission also expects to gain valuable insights into formation flying. The project team consists of the Norwegian Defence Research Establishment (FFI), the Royal Netherlands Aerospace Centre (NLR) and Netherlands Organisation for Applied Scientific Research (TNO).
NanoAvionics and Mexican Space Agency Introduce a Nanosatellite Pilot Project for Future Space Missions Columbia IL (SPX) Apr 20, 2020 Nanosatellite manufacturer and mission integrator NanoAvionics, together with the Mexican Space Agency (AEM) and students from the Polytechnic University of Atlacomulco will develop the first nanosatellite for the State of Mexico, (one of most important states of the country), the AtlaCom-1. Building the nanosatellite is part of a pilot project to establish a nanosatellite infrastructure for future space missions designed and built by Mexico's youth. The project, starting in September 2020, is a t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |