. 24/7 Space News .
STELLAR CHEMISTRY
NASA's TESS tunes into an all-sky 'symphony' of red giant stars
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Aug 06, 2021

file illustration only

Using observations from NASA's Transiting Exoplanet Survey Satellite (TESS), astronomers have identified an unprecedented collection of pulsating red giant stars all across the sky. These stars, whose rhythms arise from internal sound waves, provide the opening chords of a symphonic exploration of our galactic neighborhood.

TESS primarily hunts for worlds beyond our solar system, also known as exoplanets. But its sensitive measurements of stellar brightness make TESS ideal for studying stellar oscillations, an area of research called asteroseismology.

"Our initial result, using stellar measurements across TESS's first two years, shows that we can determine the masses and sizes of these oscillating giants with precision that will only improve as TESS goes on," said Marc Hon, a NASA Hubble Fellow at the University of Hawaii in Honolulu. "What's really unparalleled here is that TESS's broad coverage allows us to make these measurements uniformly across almost the entire sky."

Hon presented the research during the second TESS Science Conference, an event supported by the Massachusetts Institute of Technology in Cambridge - held virtually from Aug. 2 to 6 - where scientists discuss all aspects of the mission. The Astrophysical Journal has accepted a paper describing the findings, led by Hon.

Sound waves traveling through any object - a guitar string, an organ pipe, or the interiors of Earth and the Sun - can reflect and interact, reinforcing some waves and canceling out others. This can result in orderly motion called standing waves, which create the tones in musical instruments.

Just below the surfaces of stars like the Sun, hot gas rises, cools, and then sinks, where it heats up again, much like a pan of boiling water on a hot stove. This motion produces waves of changing pressure - sound waves - that interact, ultimately driving stable oscillations with periods of a few minutes that produce subtle brightness changes. For the Sun, these variations amount to a few parts per million. Giant stars with masses similar to the Sun's pulsate much more slowly, and the corresponding brightness changes can be hundreds of times greater.

Oscillations in the Sun were first observed in the 1960s. Solar-like oscillations were detected in thousands of stars by the French-led Convection, Rotation and planetary Transits (CoRoT) space telescope, which operated from 2006 to 2013. NASA's Kepler and K2 missions, which surveyed the sky from 2009 to 2018, found tens of thousands of oscillating giants. Now TESS extends this number by another 10 times.

"With a sample this large, giants that might occur only 1% of the time become pretty common," said co-author Jamie Tayar, a Hubble Fellow at the University of Hawaii. "Now we can start thinking about finding even rarer examples."

The physical differences between a cello and a violin produce their distinctive voices. Similarly, the stellar oscillations astronomers observe depend on each star's interior structure, mass, and size. This means asteroseismology can help determine fundamental properties for large numbers of stars with accuracies not achievable in any other way.

When stars similar in mass to the Sun evolve into red giants, the penultimate phase of their stellar lives, their outer layers expand by 10 or more times. These vast gaseous envelopes pulsate with longer periods and larger amplitudes, which means their oscillations can be observed in fainter and more numerous stars.

TESS monitors large swaths of the sky for about a month at a time using its four cameras. During its two-year primary mission, TESS covered about 75% of the sky, each camera capturing a full image measuring 24-by-24 degrees every 30 minutes. In mid-2020, the cameras began collecting these images at an even faster pace, every 10 minutes.

The images were used to develop light curves - graphs of changing brightness - for nearly 24 million stars over 27 days, the length of time TESS stares at each swath of the sky. To sift through this immense accumulation of measurements, Hon and his colleagues taught a computer to recognize pulsating giants. The team used machine learning, a form of artificial intelligence that trains computers to make decisions based on general patterns without explicitly programming them.

To train the system, the team used Kepler light curves for more than 150,000 stars, of which some 20,000 were oscillating red giants. When the neural network finished processing all of the TESS data, it had identified a chorus of 158,505 pulsating giants.

Next, the team found distances for each giant using data from ESA's (the European Space Agency's) Gaia mission, and plotted the masses of these stars across the sky. Stars more massive than the Sun evolve faster, becoming giants at younger ages. A fundamental prediction in galactic astronomy is that younger, higher-mass stars should lie closer to the plane of the galaxy, which is marked by the high density of stars that create the glowing band of the Milky Way in the night sky.

"Our map demonstrates for the first time empirically that this is indeed the case across nearly the whole sky," said co-author Daniel Huber, an assistant professor for astronomy at the University of Hawaii. "With the help of Gaia, TESS has now given us tickets to a red giant concert in the sky."


Related Links
Transiting Exoplanet Survey Satellite
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A large tidal stream observed in the Sombrero galaxy
Santa Cruz de Tenerife, Spain (SPX) Jul 22, 2021
According to the latest cosmological models, large spiral galaxies such as the Milky Way grew by absorbing smaller galaxies, by a sort of galactic cannibalism. Evidence for this is given by very large structures, the tidal stellar streams, which are observed around them, which are the remains of these satellite galaxies. But the full histories of the majority of these cases are hard to study, because these flows of stars are very faint, and only the remains of the most recent mergers have been detected. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space station mishap caused orbiting lab to rotate 1 1/2 times, NASA says

Northrop Grumman set to launch 16th cargo delivery mission to ISS

Boeing Starliner launch delayed indefinitely

Virgin Galactic restarting space tickets from $450,000

STELLAR CHEMISTRY
Boeing postpones Starliner capsule launch attempt over valve issue

SpaceX briefly puts together largest rocket in history at Texas base

Next Vega mission to orbit Pleiades Neo 4 EO bird and 4 small science sats

NASA continues RS-25 testing with 6th installment at Stennis

STELLAR CHEMISTRY
NASA begins recruitment for long-duration Mars Mission Analog Study

Helicopter scouts ridge area for Perseverance

China's Mars rover travels over 800 meters on red planet

Mars rock drilling begins after NASA's helicopter helps plan rover's route

STELLAR CHEMISTRY
Tianhe astronauts use free time to watch ping-pong and exercise

Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

STELLAR CHEMISTRY
Long March rocket lifts off with communications satellite

BlackSky to expand constellation with three back-to-back missions

Skykraft to begin launch of space-based air traffic management constellation

Next batch of OneWeb satellites set to launch August 20

STELLAR CHEMISTRY
NASA Exploration has LEGS

NSF awards funding for next-generation VLA antenna development

Experiment bound for Space Station turns down the heat

DARPA selects research teams to enable quantum shift in spectrum sensing

STELLAR CHEMISTRY
New ESO observations show rocky exoplanet has just half the mass of Venus

Did nature or nurture shape the Milky Way's most common planets

Astronomers find evidence of possible life-sustaining planet

Small force, big effect: How the planets could influence the sun

STELLAR CHEMISTRY
Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

A few steps closer to Europa: spacecraft hardware makes headway

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.