24/7 Space News
SOLAR SCIENCE
Multiple Spacecraft Tell the Story of One Giant Solar Storm
On April 17, 2021, one of the Solar Terrestrial Relations Observatory (STEREO) spacecraft captured this view of a coronal mass ejection billowing away from the Sun (which is covered by the black disk at center to better see features around it).
ADVERTISEMENT
     
Multiple Spacecraft Tell the Story of One Giant Solar Storm
by Vanessa Thomas for GSFC News
Greenbelt MD (SPX) Mar 05, 2024

April 17, 2021, was a day like any other day on the Sun, until a brilliant flash erupted and an enormous cloud of solar material billowed away from our star. Such outbursts from the Sun are not unusual, but this one was unusually widespread, hurling high-speed protons and electrons at velocities nearing the speed of light and striking several spacecraft across the inner solar system.

In fact, it was the first time such high-speed protons and electrons - called solar energetic particles (SEPs) - were observed by spacecraft at five different, well-separated locations between the Sun and Earth as well as by spacecraft orbiting Mars. And now these diverse perspectives on the solar storm are revealing that different types of potentially dangerous SEPs can be blasted into space by different solar phenomena and in different directions, causing them to become widespread.

"SEPs can harm our technology, such as satellites, and disrupt GPS," said Nina Dresing of the Department of Physics and Astronomy, University of Turku in Finland. "Also, humans in space or even on airplanes on polar routes can suffer harmful radiation during strong SEP events."

Scientists like Dresing are eager to find out where these particles come from exactly - and what propels them to such high speeds - to better learn how to protect people and technology in harm's way. Dresing led a team of scientists that analyzed what kinds of particles struck each spacecraft and when. The team published its results in the journal Astronomy and Astrophysics.

Currently on its way to Mercury, the BepiColombo spacecraft, a joint mission of ESA (the European Space Agency) and JAXA (Japan Aerospace Exploration Agency), was closest to the blast's direct firing line and was pounded with the most intense particles. At the same time, NASA's Parker Solar Probe and ESA's Solar Orbiter were on opposite sides of the flare, but Parker Solar Probe was closer to the Sun, so it took a harder hit than Solar Orbiter did. Next in line was one of NASA's two Solar Terrestrial Relations Observatory (STEREO) spacecraft, STEREO-A, followed by the NASA/ESA Solar and Heliospheric Observatory (SOHO) and NASA's Wind spacecraft, which were closer to Earth and well away from the blast. Orbiting Mars, NASA's MAVEN and ESA's Mars Express spacecraft were the last to sense particles from the event.

Altogether, the particles were detected over 210 longitudinal degrees of space (almost two-thirds of the way around the Sun) - which is a much wider angle than typically covered by solar outbursts. Plus, each spacecraft recorded a different flood of electrons and protons at its location. The differences in the arrival and characteristics of the particles recorded by the various spacecraft helped the scientists piece together when and under what conditions the SEPs were ejected into space.

These clues suggested to Dresing's team that the SEPs were not blasted out by a single source all at once but propelled in different directions and at different times potentially by different types of solar eruptions.

"Multiple sources are likely contributing to this event, explaining its wide distribution," said team member Georgia de Nolfo, a heliophysics research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Also, it appears that, for this event, protons and electrons may come from different sources."

The team concluded that the electrons were likely driven into space quickly by the initial flash of light - a solar flare - while the protons were pushed along more slowly, likely by a shock wave from the cloud of solar material, or coronal mass ejection.

"This is not the first time that people have conjectured that electrons and protons have had different sources for their acceleration," de Nolfo said. "This measurement was unique in that the multiple perspectives enabled scientists to separate the different processes better, to confirm that electrons and protons may originate from different processes."

In addition to the flare and coronal mass ejection, spacecraft recorded four groups of radio bursts from the Sun during the event, which could have been accompanied by four different particle blasts in different directions. This observation could help explain how the particles became so widespread.

"We had different distinct particle injection episodes - which went into significantly different directions - all contributing together to the widespread nature of the event," Dressing said.

"This event was able to show how important multiple perspectives are in untangling the complexity of the event," de Nolfo said.

These results show the promise of future NASA heliophysics missions that will use multiple spacecraft to study widespread phenomena, such as the Geospace Dynamics Constellation (GDC), SunRISE, PUNCH, and HelioSwarm. While single spacecraft can reveal conditions locally, multiple spacecraft orbiting in different locations provide deeper scientific insight and offer a more complete picture of what's happening in space and around our home planet.

It also previews the work that will be done by future missions such as MUSE, IMAP, and ESCAPADE, which will study explosive solar events and the acceleration of particles into the solar system.

Related Links
Solar Science at NASA
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR SCIENCE
Gaps preventing accurate predictions of solar flare impacts on Earth
Ann Arbor MI (SPX) Feb 29, 2024
The recent spike of activity from the sun occurred during what NASA has dubbed the Heliophysics Big Year-a celebration of solar science centered on the April 8 total eclipse, the last that will be visible from the continental U.S. for 20 years. University of Michigan experts on space weather and solar physics are available to discuss how well the impacts of such flares on Earth can be predicted and what is needed to improve those predictions. U-M has had a leading role in developing the mode ... read more

ADVERTISEMENT
ADVERTISEMENT
SOLAR SCIENCE
First Arab woman to graduate NASA training shoots for the Moon

New NASA astronauts graduate, eying Moon -- and Mars

Astronauts arrive at International Space Station for swap

SpaceX launches new crew to ISS

SOLAR SCIENCE
SpaceX eyes March 14 for next Starship test launch

NASA tests limits of updated engines for future Artemis missions

NASA's SpaceX Crew-8 mission docks with International Space Station

Australia's first orbital launch facility license awarded to Bowen Spaceport

SOLAR SCIENCE
Rover Kinesthetics: Sols 4116-4117

Study determines the original orientations of rocks drilled on Mars

Curiosity successfully drills 40 holes on Mars

Study reveals potential for life's building blocks from Mars' ancient atmosphere

SOLAR SCIENCE
Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

Chang'e 6 and new rockets highlight China's packed 2024 space agenda

Long March 5 deploys Communication Technology Demonstrator 11 satellite

SOLAR SCIENCE
Iridium to Boost Secure Global Navigation with Satelles Acquisition

Sidus Space Sets Public Offering Price

US and Australia signs Space Technology Safeguards Agreement

SKorea enhances military operations with Iridium connectivity

SOLAR SCIENCE
Apex Launches Aries SN1, Marks a Milestone in Satellite Bus Production with Record-Breaking Build Time

Full Disclousre: Enhanced Radiation Warnings for Space Tourists

Terran Orbital Secures Up to $45 Million NASA Contract for Space Technology Enhancement

AI Enhances Detection of Tiny Space Debris, Paving Way for Safer Space Operations

SOLAR SCIENCE
JWST images dispersing gas in a planet-forming disk for first time

Bayesian network analysis sheds light on sci-fi and real-world exoplanet representation

Space research sheds new light on formation of planets

More Planets than Stars: Kepler's Legacy

SOLAR SCIENCE
NASA's Juno Mission Measures Oxygen Production at Europa

UCF scientists use James Webb Space Telescope to uncover clues about Neptune's evolution

Solved at Pitt: What are Saturn's rings made of?

New moons of Uranus and Neptune announced

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.