24/7 Space News
SPACE MEDICINE
ZeroG may cause cancer in space but on Earth, it could help develop treatments
illustration only
ZeroG may cause cancer in space but on Earth, it could help develop treatments
by Sai Deepika Reddy Yaram and Soumya Srivastava
Morgantown WV (SPX) Jan 26, 2025

As space travel gains traction and astronauts spend increasing amounts of time in space, studying its effects on health has become increasingly critical.

Is space travel truly safe? Far from it - research has shown that the effects of space radiation and microgravity on the human body are both detrimental and long-lasting. Creating space conditions on Earth, however, could potentially help researchers treat cancer.

We are biomedical engineers studying how the body's cells change under microgravity. Mimicking microgravity conditions on Earth allows researchers to study its effects without the need for space travel.

Lab research in space

Microgravity is a condition where gravity is extremely weak and objects are almost weightless. This occurs in space, where Earth's gravity barely affects astronauts.

Being in a microgravity environment for an extended period of time can lead to several health issues, including bone loss, muscle weakness, face puffiness and heart changes. Even after astronauts return to Earth, their bodies do not completely go back to normal.

Studying how cells, organs and tissues respond to microgravity can help scientists better understand how to address any related harmful changes to the body. However, conducting research on lab samples in space faces significant challenges.

It is costly to launch equipment and samples, and experiments need to be planned around weightless conditions and the force of launch. Strict deadlines, limited access to space missions and dependence on astronauts to conduct experiments increase the complexity of these studies, making accuracy and cooperation crucial for success.

Accessing samples after they have been sent to space can also be difficult. They risk being damaged while in the harsh conditions of space and during transport back to Earth.

The process of planning and carrying out a lab study in space can be time-consuming, limiting the practicality of frequent experimentation.

Studying microgravity on Earth

To address these issues, scientists have developed equipment capable of simulating microgravity conditions on Earth.

One such device is the clinostat, a machine that continuously spins samples to mimic the effects of low gravity. By constantly rotating, it spreads the effects of gravity evenly so that the sample is "weightless" or close to it. To mimic the effects of microgravity, the clinostat must rotate at just the right speed - fast enough that the sample doesn't react to gravity, but not so fast that it feels other strong forces.

Another method called dielectrophoresis places particles such as cells in a nonuniform electric field. Unlike a uniform electric field, which is the same strength and direction everywhere, a nonuniform electric field changes in strength or direction at different points. This uneven field causes cells to move based on differences in their electrical properties compared with the liquid surrounding them, enabling researchers to separate and study them.

While this technique has been widely used on Earth, exploring its application in microgravity environments could allow researchers to more precisely manipulate particles and conduct research not feasible under Earth's gravity.

Tools such as clinostats and dielectrophoresis provide an easier, cheaper and faster way to study microgravity's effects on cells compared with space missions. They are cost-effective and portable, requiring less expensive equipment and a smaller volume of samples to quickly generate reliable data.

Microgravity and cancer

While microgravity can cause cancer, it could also potentially help researchers better understand and treat cancer.

Cancer is one of the most challenging diseases to treat because it evolves rapidly and often becomes resistant to available treatments. By observing cancer cells in microgravity, researchers can study how they grow, divide and respond to drugs under different conditions. In simple terms, we are taking cancer cells out of their comfort zone to see how they react to an unknown environment.

For example, researchers have observed that cancer cells have improved survival under microgravity. They also saw changes to their electrical properties. Other studies have shown that microgravity can alter immune cell function and how cells communicate with each other.

Our team and others hypothesize that cancer cells may respond more effectively to certain drugs when exposed to a weightless environment. We're looking into whether we can use microgravity to manipulate cancer cells to behave less aggressively and become more vulnerable to treatment.

This research is still in its infancy. But if successful, these insights could help researchers develop new treatments that are more effective back here on Earth.

Source: The Conversation/

Related Links
West Virginia University
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Emory researchers explore heart cell growth in space to advance treatments on Earth
Los Angeles CA (SPX) Jan 22, 2025
A research team led by Chunhui Xu from Emory University has demonstrated that heart muscle cells can survive and grow in the microgravity environment of space. Published in Biomaterials, the findings suggest new avenues for creating more resilient heart cells that could enhance cell therapy-a technique that involves transplanting millions of heart cells to repair damaged cardiac tissue. "The idea behind cell therapy is to regenerate new muscle," explained Xu, a professor of pediatrics at the Emory ... read more

SPACE MEDICINE
SpaceX mission to return US astronauts to happen 'soon': Trump

NASA Opens New Challenge to Inspire Climate Solutions

India becomes 4th nation to complete unmanned docking in space

India achieves 'historic' space docking mission

SPACE MEDICINE
China's Hainan Commercial Launch Center expands with two new launch pads

New Shepard's 29th mission to simulate Lunar Gravity

SpaceX launches 21 Starlink satellites from Cape Caneveral

NASA's Artemis II rocket booster stacking process reaches new milestone

SPACE MEDICINE
Now That's Ingenuity: First Aircraft Measurement of Winds on Another Planet

NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech

Mysterious Martian mounds formed by ancient water

New marsquake data sheds light on the Martian crust mystery

SPACE MEDICINE
Shenzhou XIX crew completes second spacewalk mission

Shenzhou XIX crew completes second spacewalk

China unveils logos for three space missions in 2025

H3 Shenzhou-19 astronauts advance experiments aboard Tiangong space station

SPACE MEDICINE
Stoke Space secures $260M in Series C Funding

The Tyranny of the VC Equation Why Your Company Might Not Be "VC-able"

The Space Economy to Reach $944 Billion by 2033

ispace-EUROPE secures historic authorization for Lunar resource mission

SPACE MEDICINE
Materials Can Remember Sequences of Events in Unexpected Ways

EdgeCortix SAKURA-I AI Accelerator Validated for Radiation Resilience in Space Missions

DeepSeek, Chinese AI startup roiling US tech giants

Rubbish roads: Nepal explores paving with plastic

SPACE MEDICINE
Extreme supersonic winds detected on distant exoplanet

Double the disks double the discovery new insights into planet formation in DF Tau

Bioactive compounds with industrial applications discovered in Andes bacteria

Astrophysicists reveal structure of exocomet belts around 74 nearby stars

SPACE MEDICINE
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.