. 24/7 Space News .
EARLY EARTH
Microfossil found in Scottish Highlands could be 'missing link' in early animal evolution
by Staff Writers
Chestnut Hill MA (SPX) May 04, 2021

This enhanced image of Bicellum brasieri shows an outer wall of sausage-shaped cells enclosing an inner cell mass. The fossil reveals multicellular structure in an early animal form 400 million years earlier than previously established.

The billion-year-old fossil of an organism, exquisitely preserved in the Scottish Highlands, reveals features of multicellularity nearly 400 million years before the biological trait emerged in the first animals, according to a new report in the journal Current Biology by an international team of researchers, including Boston College paleobotanist Paul K. Strother.

The discovery could be the "missing link" in the evolution of animals, according to the team, which included scientists from the U.S., United Kingdom, and Australia. The microfossil, discovered at Loch Torridon, contains two distinct cell types and could be the earliest example of complex multicellularity ever recorded, according to the researchers.

The fossil offers new insight into the transition of single celled organisms to complex, multicellular animals. Modern single-celled holozoa include the most basal living animals and the fossil discovered shows an organism which lies somewhere between single cell and multicellular animals, or metazoa.

"Our findings show that the genetic underpinnings of cell-to-cell cohesion and segregation - the ability for different cells to sort themselves into separate regions within a multicellular mass - existed in unicellular organisms a billion years ago, some 400 million years before such capabilities were incorporated into the first animals," said Strother, a research professor in the Department of Earth and Environmental Sciences at Boston College.

The fossil's discovery in an inland lake shifts the focus on the first forms of early life from the ocean to freshwater.

Animals, or etazoa, are one of only five groups of organisms that have evolved complex multicellularity - organisms that grow from a single cell that develops into a myriad of different cells and tissues. Animals probably evolved from unicellular ancestors that went through multicellular stages during their life cycles, said Strother, an expert in paleobotany and palynology, the study of fossil spores and pollen. Land plants, too, achieved complex multicellularity when they evolved from simpler algal ancestors some time during the early Paleozoic from about 500 to 400 million years ago..

"We describe here a new fossil that is similar to living unicellular relatives of animals, belonging to the group Ichthyosporea," said Strother. "Our fossil shows life-cycle stages with two different kinds of cells, which could be the first step toward the evolution of complex multicellularity in the evolutionary lineage leading to the Metazoa."

The study was based on populations of cells preserved in the mineral phosphate that were collected from billion-year-old lake deposits found in the northwest Scottish Highlands, Strother said. Samples are prepared in rock thin sections which allow microfossils to be seen under the light microscope or with a focused ion beam microscope.

The microfossils were discovered as part of an ongoing project to describe life living in freshwater lakes one billion years ago, using samples collected in Scotland and Michigan by Strother beginning in 2008, with support from NASA and the National Geographic Society, and now the Natural Environment Research Council in the UK.

The new fossil has been described and formally named Bicellum brasieri in the new report.

Strother said the discovery has the potential to change the way scientists look at the earliest forms of life on Earth.

"Our study of life in billion-year-old lakes is challenged by our ability to determine which kinds of organisms are represented in these deposits," he said. "Previously we have assumed that most of what we see in these deposits are various kinds of extinct algae, but the morphological features of Bicellum really are more like those of modern-day unicellular relatives of animals. This is causing us to broaden our approach to reconstructing the diversity and ecology of life on Earth one billion years ago."

The discovery will allow researchers to expand upon a more thorough reconstruction of the life-cycle of Bicellum, Strother said.

"Armed with comparative morphology with modern day Ichthyosporeans, we may be able to recognize additional morphogenic stages and determine how a single generative cell divides to become a multicellular cell mass," he said.

Research paper


Related Links
Boston College
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Researcher questions whether powered flight appeared on non-avialan dinosaurs
Malaga, Spain (SPX) Apr 28, 2021
Powered flight in animals -that uses flapping wings to generate thrust- is a very energetically demanding mode of locomotion that requires many anatomical and physiological adaptations. In fact, the capability to develop it has only appeared four times in the evolutionary history of animals: on insects, pterosaurs, birds and bats. A research paper published in 2020 in the scientific journal Current Biology concluded that, apart from birds -the only living descendants of dinosaurs-, powered flight ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Space tourism - 20 years in the making - is finally ready for launch

China wants new space station to be more international

China steps on protecting technology 'fall short': USTR

Top Things to Know about Space Station Crew Handovers

EARLY EARTH
NASA continues RS-25 engine testing for future Artemis missions

Astronauts leave ISS, begin return journey to Earth on SpaceX craft

Jacobs and NASA begin processing of SLS Core Stage at Cape

China plans four Tiangong Space Station launches in 2021

EARLY EARTH
NASA extends Mars helicopter mission to assist rover

How Zhurong will attempt to touch down on the red planet

Mars Ingenuity helicopter given new scouting mission

Zhurong on course for historic journey

EARLY EARTH
China launches space station core module Tianhe

Core capsule launched into orbit

Mars mission team prepares for its toughest challenge

China launches first module for new space station

EARLY EARTH
Lithuania to become ESA Associate Member state

Private firms expected to help build space station

SpaceX successfully launches into space carrying 60 more Starlink satellites

Spacepath Communications to power new satellite teleport services

EARLY EARTH
Supply of key minerals for clean energy crucial: IEA

Fortnite maker girds for epic court clash with Apple

China's Long March-5B rocket booster set for uncontrolled reentry

VR ER: tech helps UK medical students learn safely

EARLY EARTH
Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

EARLY EARTH
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.